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ABSTRACT
In ultrasound, second harmonic imaging is usually preferred
due to the higher clutter artifacts and speckle noise common
in the first harmonic image. Typical ultrasound use either one
or the other image, applying corresponding filters for each
case. In this work we propose a method based on a joint
sparsity model that fuses the first and second harmonic im-
ages while performing clutter mitigation and noise reduction.
Our approach, Fused Morphological Component Analysis
(FMCA), uses two adaptive dictionaries for characterizing
the clutter components in each image, and a common dictio-
nary for the tissue representation. Our results indicate that
the obtained images contain less clutter artifacts, less speckle
noise and as such enjoy of the benefits of both harmonic input
images.

Index Terms— Artifact reduction, signal separation,
harmonic imaging, image fusion, morphological component
analysis

1. INTRODUCTION

Ultrasound imaging is one of the most important medical
imaging modalities, performed by acquiring the reflected
ultrasound waves from the inner tissues. Although this
modality is able to provide portable, online imaging with
no radiation, it also suffers from several limitations, such as
low resolution, low signal to noise ratio due to the multiplica-
tive speckle noise, and other artifacts. In echocardiography
in particular, the use of tissue harmonic imaging has been
shown to improve the image quality [1]. Acquiring the sec-
ond or higher harmonics instead of the reflected signals in the
fundamental frequency enables suppressed side and grating
lobes and minimal harmonic content in reverberant echoes.
These contribute to a cleaner image with less artifacts and
higher resolution. However, this comes at the cost of lower
penetration depth and intensity [1, 2].
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An important class of artifact in ultrasound imaging is
that of clutter, which appears mainly as a quasi-static cloud
of echo signals [3]. This problem is most severe in patients
for whom the acquisition conditions are difficult [4]. Such ar-
tifacts obscure tissue areas and the resulting image has poor
contrast and reduced readability. Therefore, it can mislead
to corrupt diagnostic information like in myocardium strain
evaluation [5], tracking techniques for functioning diagno-
sis [6], or visualization of cardiac abnormalities [7]. Clutter-
ing is most prominent in fundamental frequency imaging, re-
quiring aggressive filtering techniques, while it is usually re-
duced using harmonic imaging. Nevertheless, in some cases
clutter is still present in the second harmonic image [8], re-
quiring additional processing.

Some typical schemes for clutter mitigation involve lin-
ear filtering and transformation onto unitary bases such as the
Discrete Fourier Transform [9] and Wavelets [10]. More ef-
fective methods are based on adaptive bases learned from the
echo data, such as Principal Component Analysis (PCA) [11].
A different approach is that of Morphological Component
Analysis (MCA), as suggested in [12] and [13], where the
separation of the signals is done by means of an adaptive re-
dundant non-orthonormal basis or dictionary.

Image fusion in medical imaging is an approach that seeks
to combine the benefits of different medical imaging modali-
ties to enhance salient features [14]. In ultrasound imaging in
particular, one can consider fusion of several harmonic imag-
ing bands. Indeed, the work reported in [15] considers such
fusion directed towards superresolution.

In the last decade, sparsity related ideas have had a grow-
ing impact on image processing applications [16]. In this
work we propose a method of fusing the first and second har-
monic images while performing clutter mitigation based on
joint sparse representations. We propose a model that en-
forces joint sparsity on the tissue component of both fun-
damental and second harmonic images, while allowing the
removal of clutter from both of them simultaneously. As de-
scribed later, this yields a cleaner image in terms of clutter and
speckle noise removal, while providing a fused image which
enjoys the benefits of both ultrasound harmonics.



2. SPARSE REPRESENTATIONS OF SIGNALS

A signal t ∈ Cn is said to have a sparse representation over
a known overcomplete dictionary D ∈ Cn×m if there exists a
sparse vector x ∈ Cm, such that t = Dx and ‖x‖0 = k � n.
Here, ‖·‖0 denotes the `0 quasi-norm, which is the number of
non-zero elements in a vector. In practice, an observed signal
s is obtained by measuring a signal of interest t contaminated
with noise v, which is often assumed to be additive WGN
with standard deviation σ, i.e., s = t+ v. The objective is to
recover the signal t from the noisy observation s. Assuming
a sparse representation prior on the signal t, one can redefine
the observed signal as s = Dx+ v. Then, x is computed by
solving the following optimization problem:

min
x
‖s−Dx‖22 s.t. ‖x‖0 ≤ k. (1)

where k is the maximum number of non-zeros allowed in the
representation. Once the sparse vector x̂ has been obtained,
the estimate of the clean is computed by multiplying the dic-
tionary D by x̂. Several methods exist to compute an approx-
imate solution x̂ to Problem (1), one being the greedy pursuit
algorithm called Orthogonal Matching Pursuit (OMP) [17].
An alternative is to relax the `0-norm with the `1-norm, ob-
taining the convex Basis Pursuit problem [18] which can be
solved using standard optimization algorithms. The OMP has
proven to be an affective compromise between accuracy and
computational cost [19] and it will be used in our work when
solving Problem (1).

The choice of the dictionary D is of great importance in
obtaining the sparse vector x. Though computationally ef-
ficient, dictionaries that are mathematically pre-defined are
limited in terms of approximation performance [19]. Alterna-
tively, the dictionary can be learned adaptively from the data
to yield better results. Amongst these, the K-SVD [20] al-
gorithm is a commonly used method for dictionary learning,
which has proven to be effective in several image processing
applications [16].

3. HARMONIC IMAGING FUSION WITH SPARSE
SIGNAL SEPARATION

The echo waves correspond to a linear phenomena. Hence,
and following our previous work in [12, 13], we assume that
the acquired signal is the linear combination of echoes re-
flected by tissue, reverberation artifacts (clutter) and measure-
ment noise:

s = t+ c+ v, (2)

where t is the tissue signal and c represents the clutter ar-
tifacts. In order to construct the training signals we divide
the data into small overlapping patches and apply the separa-
tion and fusion scheme to these small patches. We take each
sample signal si as a two-dimensional patch in the axial and

Fig. 1: Diagram describing the process of data construction from the
sequence of echo images. Each signal si is a columnized version of
a two dimensional patch in the axial and temporal directions.

temporal dimensions1 from the observed signal s, enabling
the study of the temporal characteristics (static/moving) of a
patch. That is, a signal si is a vectorized version of a two
dimensional patch of M elements across the axial direction
and N elements (frames) in the temporal direction. The size
N influences the amount of motion that is captured by the
patches2. The assumptions above about the signal model re-
main true also for each patch, and hence Eq. (4) is applicable
to the patches si:

si = ti + ci + vi. (3)

Assuming that the tissue and the clutter signals have
sparse representations xi

t and xi
c, under dictionaries Dt and

Dc, respectively, we may rewrite (3) as

si = Dtx
i
t+Dcx

i
c+vi = [Dt|Dc] ·

[
xi
t

xi
c

]
+vi = Dxi+vi,

(4)
where D is a dictionary constructed by concatenating both
dictionaries Dt and Dc, and xi represents the concatena-
tion of the sparse representations of the tissue and clutter
components. When a signal can be decomposed into two
or more separate components having a sparse representation
under different dictionaries, they can be separated through the
scheme in Eq. (4), which is known as Morphological Compo-
nent Analysis (MCA) [21]. Hence, the clutter component can
be filtered by obtaining xi and then removing the coefficients
corresponding to the clutter as

ŝi = si −Dcx
i
c = Dtx

i
t + vi, (5)

where ŝi is the clutter-filtered version of the patch vector si.
Note that a different alternative would be to reconstruct ŝi

considering just the tissue component. This way, however,
some small and fast moving structures might be confused with
noise and would be removed. Thus, we employ Eq. (5).

1The echo data can be taken as a three dimensional element, by adding
consecutive axial lines to every signal si and thus including information in
the lateral direction.

2For a given time lapse, the faster the frame rate the bigger the size N
needs to be in order to capture the same amount of information.



While this signal model has proven useful in previous
works [12, 13], we extend the model in Eq. (4) into a jointly
sparse morphological analysis by considering signals s1 and
s2 corresponding to the first and second harmonic images, re-
spectively, and their corresponding aligned patches si1 and si2.
Using the fact that the tissue component in both images has
the same source [15], we can enforce these components to
have the same sparse representation under the tissue dictio-
nary Dt. On the other hand, the clutter components will dif-
fer due to the different phenomena generating these artifacts
in each frequency range [1]. This motivates us to propose the
following signal model:[

si1
si2

]
=

[
Dt Dc1 0

Dt 0 Dc2

]  xi
t

xi
c1

xi
c2

+ vi, (6)

where the expression in the left-hand side accounts for the
concatenation of the signal vectors, while Dc1 and Dc2 are
the dictionaries of the clutter components of the first and sec-
ond harmonics, respectively. These clutter dictionaries are
concatenated with the tissue dictionary Dt and two zero ma-
trices to form the complete dictionary. This way, the sparse
representation of the tissue components are jointly coded into
the top elements of x, namely xi

t, while the clutter compo-
nents are allowed to differ, and similarly the noise compo-
nents. Armed with these elements, we compute an equivalent
of Eq. (5) for each of the signals si1 and si2, and obtain the
fused patches as 3:

ŝif =
ŝi1 + ŝi2

2
= Dtx

i
t +

1

2
(vi

1 + vi
2). (7)

The dictionaries involved may be selected a-priori based
on the characteristics of the components, or may be trained on
real data instead. We follow a similar approach to that of [13],
and train the clutter dictionaries Dc1 and Dc2 on real data
taken from the right side of the chest with the K-SVD algo-
rithm, from the first and second harmonics respectively. This
alternative takes advantage of the fact that the right side of the
chest has a similar physical structure to that of the left side
(ribs and lungs), with the exception that there are no echoes
returning from the heart. Also, since the atoms are trained
on the reverberations from the ribs, this method enables us to
train a clutter dictionary off-line, which fits all patients.

For the tissue dictionary Dt, we propose a scheme that
naturally incorporates information from both harmonic im-
ages by training the dictionary on the average of both signals
(s1+ s2)/2. However, since these images contain clutter arti-
facts, some atoms in the resulting dictionary will correspond
to this static behavior. In order to clean these atoms, we seek
among them those that are well represented by the clutter dic-

3Note that the signals s1 and s2 have been previously normalized to have
the same energy. Otherwise we would need to introduce weighting in (7).

tionary Dc2
4, essentially applying OMP on each of them with

a sparsity constraint of M obtaining corresponding represen-
tations γj . Then, we remove from Dt those atoms dj

t which
satisfy with the following condition:

||dj
t −Dc2 γ

j ||2 ≤ ε, (8)

where ε is a threshold parameter set empirically as 0.2.
After the sparse representation xi for each patch is com-

puted, the clutter is removed per patch as exposed in Eq.
(5). Then, the clean patches are merged together using Eq.
(7), and finally the fused patches are averaged to reconstruct
the output image. We dub this method Fused Morphological
Component Analysis (FMCA).

4. EXPERIMENTS AND RESULTS

In this section we demonstrate our method using two data
sets of In-phase Quadrature (IQ) echo data acquired from a
parasternal long axis view of two adult male volunteers. The
sequences contain a full heart cycle (40-50 frames) and were
acquired using a Vivid S6 (GE Medical Systems, Israel) ultra-
sound scanner transmitting at a frequency of 1.7 MHz. The
fundamental and the second harmonic signals are received si-
multaneously at 1.7 and 3.4 MHz respectively, and separated
later with a bandwidth of 0.7 MHz for the first harmonic and
1 MHz for the second harmonic. The images are of reduced
quality due to limitations of the simultaneous acquisition of
both harmonic signals. Clutter artifacts are present due to
multi-path reverberations, mainly from the thoracic cage and
sternum. Our implementation uses full-overlapping 15 × 15
patches, with clutter dictionaries of 248 atoms each, and a tis-
sue dictionary of 900 atoms (before the cleaning stage in Eq.
(8) with ε = 0.2). We used 10 iterations for K-SVD.

The amount of clutter removed from an echo frame is
quantified by the Contrast-to-Noise-Ratio (CNR) [11] mea-
sure:

CNR = 20 log10

(
|µi − µ0|

σ0

)
, (9)

where µi and µ0 are the mean envelope-detected quantities in
regions with and without clutter artifacts (marked with ma-
genta and blue rectangles in Fig. 2a, respectively), and σ0 is
the standard deviation in the clutter-empty region. Then, the
mean CNR performance for an entire sequence is obtained by
averaging the CNR across frames.

In order to quantify the reduction of speckle noise we
measure the Spatial Standard Deviation (SSD) within a homo-
geneous region chosen in the interior of the ventricle where no
tissue is to be expected. The SSD is computed for each frame
and then averaged along the time direction.

In Fig. 2 we present the two harmonic images taken from
dataset 1 ((a) and (b), where the clutter is marked with a red

4The dictionary Dc1 could have been used as well. No significant differ-
ence was observed in our experiments.



(a) (b)

(c) (d)
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Fig. 2: Examples of images from the first (a) and second (b) har-
monics, their corresponding filtered versions ŝ1 and ŝ2 ((c) and (d),
respectively), and the FMCA output image ŝf (e).

ellipse and ventricle areas with speckle noise with cyan el-
lipses), the corresponding clean images ŝ1 and ŝ2, and the
output image ŝf in (e). It can be appreciated that ŝf has been
filtered effectively from clutter, and also contains consider-
ably less speckle noise. The resolution achieved is somewhat
in between that of the first and of the second harmonics. Note
how structures such as the mitral valve have been enhanced
by the proposed method, as shown by the green arrow. The
images from data set 2 exhibit similar results, and thus we
reproduce only the first one due to space limitations.

The quantitative results in terms of mean CNR are de-
picted in Table 1, where we also compare with the method
of [13]. In that work, the authors propose a Tissue Adaptive-
MCA (TA-MCA) based on an off-line trained dictionary for
the clutter component and a tissue adaptive dictionary for the
tissue component. We thus apply TA-MCA for cluttering re-
moval to the first and second harmonic images independently,

Dataset 1 Dataset 2
Orig. 1st Harm. -2.84 -6.11
Orig. 2nd Harm. 0.01 -1.51
TA-MCA 1st Harm. 1.23 -2.28
TA-MCA 2nd Harm. 2.46 0.30
TA-MCA Compounded 1.57 -1.28
TA-MCA Improvement 3.87 2.85
FMCA 1st Harm. 1.87 -1.43
FMCA 2nd Harm. 2.59 0.25
FMCA Compounded 2.24 -0.52
FMCA Improvement 4.54 3.61

Table 1: Mean CNR results over two datasets [dB].

Dataset 1 Dataset 2
Region 1 2 1 2
Orig. 1st Harm. 53.37 44.20 24.20 28.67
Orig. 2nd Harm. 23.02 19.84 11.99 16.57
TA-MCA 1st Harm. 42.16 26.46 16.52 18.49
TA-MCA 2nd Harm. 19.86 13.55 8.40 11.82
TA-MCA Compounded 23.18 14.91 9.24 10.95
FMCA 1st Harm. 23.25 15.39 10.42 11.14
FMCA 2nd Harm. 18.05 12.43 7.21 10.50
FMCA Compounded 15.58 10.48 6.61 8.14

Table 2: Mean SSD results over two regions in each dataset.

and present the results over the averaged version of these out-
comes for the sake of comparison. We also include the rel-
ative improvements over the average of the original first and
second harmonic images. Our approach of combining the in-
formation of the first and second harmonic within the separa-
tion task allows the better coding of the sparse representations
corresponding to the tissue, therefore enabling better filtering
of the clutter, as evidenced by the results.

The speckle noise reduction in terms of the SSD can be
appreciated in Table 2. Our method exploits the joint cod-
ing of the information in both harmonic images and obtains a
speckle noise component which is comparable to the filtered
second harmonic. Moreover, note that our results have con-
siderably less speckle noise than TA-MCA compounded (av-
eraged) due to the improvements of the joint sparse coding.

5. CONCLUSIONS
We have presented a method that exploits the information
shared by the first and second harmonic imaging by using a
jointly sparse model. Our method makes use of dictionar-
ies that allow to perform clutter filtering through morphologi-
cal component analysis simultaneously in both harmonics and
fuses the resulting images to reduce speckle noise while en-
hancing the tissue details. FMCA achieved better cluttering
removal performance together with speckle noise reduction in
the studied datasets. A broader validation would contribute to
the understanding of the limitations of the method. Finally,
a similar scheme may be beneficial in other medical imaging
modalities.
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