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The problem of system classification consists of identifying the source system corresponding to a certain
output signal. In the context of dynamical systems, the outputs are usually given in the form of time
series, and this identification process includes determining the underlying states of the system or their
intrinsic set of parameters. In this work we propose a general framework for classification and identi-
fication based on a manifold learning algorithm. This data-driven approach provides a low-dimensional
representation of the system's intrinsic variables, which enables the natural organization of points in
time as a function of their dynamics. By leveraging the diffusion maps algorithm, a particular manifold
learning method, we are not only able to distinguish between different states of the same system but also
to discriminate different systems altogether. We construct a classification scheme based on a notion of
distance between the distributions of embedded samples for different classes, and propose three ways of
measuring such separation. The proposed method is demonstrated on a synthetic example and later
applied to the problem of person identification from ECG recordings. Our approach obtains a 97.25%
recognition accuracy over a database of 90 subjects, the highest accuracy reported for this database.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The problem of system classification or recognition deals with
identifying the source system of a particular output. In this work
we study those cases where the output signal is given in terms of a
time series, as this is often the case in dynamical systems. This
classification problem has shown to be of interest in a range of
applications [1–6], and it usually involves the estimation of the
intrinsic state of a system, or of its intrinsic parameters. This task
can be challenging, in particular when analyzing complex biolo-
gical systems where we know little about their underlying
variables.

System recognition can be viewed as a multi-class classification
problem, where machine learning algorithms are trained to
identify the source of a test signal. Under this framework, one
builds a representation of the training data which efficiently re-
presents certain features of the underlying system. These ob-
servations, or feature vectors, are then used to train a classifier in a
supervised learning fashion, adapting its parameters to best fit the
training data. While efficient, the design of these features is a key
factor in the overall performance of the classifier. Traditional
).
approaches employ hand-crafted features, given often in the form
of filters, which are effective for a specific problem, yet are hard to
design, tune and generalize to other cases.

Other methods rely solely on the data and its dynamics to ex-
tract relevant features for classification. The method presented in
this paper is based on manifold learning, and it falls into this data-
driven category. Manifold learning is an active area of research in
which the signal under analysis is assumed to belong to a low-
dimensional manifold [7–9]. By seeking for a low dimensional
representation of such manifolds, many problems in signal and
image processing become more tractable. More specifically, recent
manifold learning methods rely on the construction of a diffusion
distance between observations, and build an intrinsic re-
presentation based on the notion of similarity induced by this
distance [10]. The resulting diffusion maps algorithm embeds
signal samples in time to a low-dimensional domain where the
Euclidean distance between the mapped samples approximates
the diffusion distance in the original domain [11].

In the context of dynamical systems, the diffusion maps algo-
rithm exploits the dynamics of the system in order to determine
the distance in the diffusion embedding [12] and has shown to be
successful in a number of applications. In [13], a related method
was employed to distinguish between healthy and acidotic fetuses
from intrapartum heart rate variability signals. In a different work
[14], the authors showed that a similar approach can be used to
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predict epileptic seizures in intracranial EEG recordings, by relying
on the evolution of the assumed underlying latent variable.

When dealing with real applications, and especially with bio-
logical or physiological data, the measured signal might have
several sources of variability other than the one of interest. In
these cases, these irrelevant sources prevent us from finding a
low-dimensional representation of the latent variable under study.
A simple solution is the introduction of a proper observation op-
erator which is invariant or robust to such nuisance sources of
variability. The scattering transform, introduced recently in [15],
provides a representation which is stable to deformation and has
been very useful in a variety of applications [13,16,17].

In this work, we go one step further by formalizing a multi-
class classification framework based on the diffusion maps algo-
rithm with the scattering transform as a nonlinear observation
operator. We propose the construction of class-specific proxies by
applying the scattering transform to the training data. Then, given
a test signal, we construct virtual observations by joining every
class-specific training signals with the testing samples. The diffu-
sion maps algorithm is then applied to every such virtual ob-
servation, obtaining a low-dimensional representation in the
embedded space. By studying the distance between the distribu-
tions of the obtained training and testing samples, we are able to
identify the system to which the test signal belongs as the system
whose embedded samples diffuse the least from those of a given
set.

In particular, we apply this classification algorithm to the
challenging problem of person identification through electro-
cardiographic (ECG) signals [18]. The ECG is a signal that reflects
mainly the electrical activity of the heart, and it has been shown to
represent important recognition capabilities due to the very per-
sonal aspects that influence the generation of these signals [19].
These features make ECG as a robust candidate for biometric re-
cognition and verification [18,20]. Most previous studies dealing
with this problem have employed a traditional classification
scheme where certain ad hoc morphological features (such as
QRS-complex information, duration and amplitude of the different
waves within each cardiac cycle, etc.) are extracted and fed into a
classifier [21–23]. These methods usually require a pre-processing
stage in order to detect the R peak in the ECG, and the segmen-
tation and alignment of the corresponding segments [23–25].
Other works have employed some spectral characterization of the
ECG signal [26] and its analysis through the wavelet transform
[27]. Yet, we are not aware of any data-driven or manifold learn-
ing-based method which has attempted to tackle this problem.
Our results indicate that the proposed approach, which follows
this recent line of work, obtains state-of-the-art results in a pub-
licly available database.

The paper is organized as follows. In Section 2, we provide a
brief description of the Scattering Transform and the diffusion
maps algorithm, and their relevance for the dynamics of a system.
In Section 3 we introduce our classification scheme. In Section 4,
experimental results are presented. First we present the study of a
synthetic example, demonstrating the proposed approach. We
then move to the study of electrocardiographic (ECG) signals in the
context of a classification problem, particularly, person identifi-
cation. Lastly, we conclude in Section 5.
1 Available online at http://www.di.ens.fr/data/software/scatnet.
2. Diffusion maps for dynamics inference

In this section we will briefly review the diffusion maps algo-
rithm in the context of latent variable inference. We only describe
those elements that relate to the problem addressed in this paper,
and the reader is referred to [11,28] for a thorough review. Con-
sider a high-dimensional time series ( ) ∈ z t N , which is the output
of an unknown dynamical system θ . We assume that this system
is controlled by a hidden (and possibly time dependent) variable
θ ( )t . Manifold learning methods attempt to obtain a low dimen-
sional embedding from z(t) to θ ( )t , thus discovering the intrinsic
state of the system. To accomplish this, most (if not all) manifold
learning methods rely on the construction of some notions of
distance between samples z(t) and τ( )z . However, this distance is
not computed directly on samples from the time series. Instead, it
is measured through a nonlinear operator, which we address next.

2.1. Scattering moments as observations

As shown in [14], when applying manifold learning algorithms
to complex data such as that originated from biological and phy-
siological systems, many sources of variability might prevent these
methods from finding the low dimensional latent variable θ ( )t .
The solution is not to use the data z(t) directly but rather to em-
ploy a nonlinear observation operator Φ which is robust or stable
to such sources of variability.

A common source of variability in real applications is time
deformations. Consider the time-shifted (or time-deformed) signal
zg(t), governed by the intrinsic variable θ θ( ) = ( − ( ))t t g tg , where
the deformation is controlled by the time-varying variable g(t).
The operator Φ, which is applied to the time series obtaining the
observation vector Φ ( )tz , is said to be stable to deformation if
exists a constant C such that

θ θΦ Φ∥ ( ) − ( )∥ ≤ ∥ ( ) − ( )∥ ( )t t C t tz z . 1g g2 2

In words, the operator is stable if small time deformations in the
intrinsic variable are not translated into arbitrarily large changes in
the observation domain.

The recently proposed scattering transform is a bi-Lifshitz
nonlinear transformation which presents this kind of stability, in
contrast to the traditional Short-Time Fourier Transform [15].
These properties make this transform appealing for analyzing real
data. Indeed, the scattering transform has shown to be very useful
in a variety of applications, e.g., in [16,29,30].

Consider a complex mother wavelet ψ ( )t , and the corre-
sponding dilated versions at scales 2j, ψ ( )tj . Given the corre-
sponding scaling function (or a low-pass filter) ϕ ( )t , the first order
scattering transform of a signal z(t) is defined as the average of the
absolute value of the wavelet transform of the signal over a time
window of length =T 2J , and it is formally given by

ψ ϕΦ ( ) = | ( )* ( )|* ( ) ( )z k j z t t t, , 2S j J1 1

where ≤ ≤j J1 1 and = −t k2J 1. In words, the scattering transform
first applies a convolution with a wavelet function, at different
scales, and then applies a (contractive) modulus operation. These
coefficients are then convolved with the function ϕ ( )tJ , which
averages coefficients within an interval of length 2J. The second
order transform is obtained by employing another level of con-
volutions, formally expressed as

ψ ψ ϕΦ ( ) = ∥ ( )* ( )|* ( )|* ( ) ( )z k j j z t t t t, , . 3S j j J1 2 1 2

This cascading decomposition presents in fact a convolutional
network interpretation, and it is capable of extracting useful fea-
tures from complex signals [29]. We compute the first and second
order scattering coefficients, which typically capture most of the
content of the analyzed signal [15]. We employ the ScatNet Matlab
package,1 and collect the coefficients into the Scattering Transform
observation vectors by
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3 We denote a cardiac cycle from a QRS complex to the next one.
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( ){ } { }Φ Φ Φ( ) = ( ) ( ) ( )≤ ≤ ≤ ≤ ≤z t z j k z j k, , , . 4S j J S j j J1 11 1 2

This way, each sample z(t) yields an observation vector Φ ( ) ∈ z t n,
where n is the number of scattering coefficients.

2.2. Diffusion maps

The above presented observations, being stable to time de-
formations and other nuisance factors, can now be used by a
manifold learning algorithm with the objective of recovering the
intrinsic variables of the system generating the signal z(t). The
diffusion maps algorithm is therefore applied to the data obtained
by Φ ( )tz . This method depends on a notion of distance between
samples in time z(t) and τ( )z , which should include information
about the dynamics of the system.

When analyzing time-dependent data, the Mahalanobis dis-
tance is very useful as it considers dynamics when providing a
notion of similarity [28]. This distance incorporates information
from the time series around times t and τ, and it approximates the
distance between the latent unknown variables θ ( )t and θ τ( ). The
local variability of the data is characterized by the sample covar-

iance matrices ^ ( )tC , given by

( )( )∑ μ μΦ Φ^( ) = ( ) − ^ ( ) ( ) − ^ ( )
( )= −

+

t t t t tC z z ,
5l t L

t L
T

where μ̂ ( )t is the empirical mean of the observation vectors in a
time window of length −L2 1. A modified version of the Maha-
lanobis distance [14] between points z(t) and τ( )z (in the ob-
servation domain) is then constructed as

( )
( )

( ) ( )
( ) ( )

τ τ τ

τ

Φ Φ

Φ Φ

( ( ) ( )) = − … ^ ( ) + ^ ( )

− ( )

† †
⎜ ⎟⎛
⎝

⎞
⎠d z t z t t

t

z z C C

z z

,
1
2

, 6

T

where ^ ( )
†

tC denotes the pseudo-inverse of the sample covariance

matrix ^ ( )tC , and Φ ( )tz denotes the zero-mean observation vector
given by μΦ ( ) − ^ ( )t tz .

Once the distances between all N observations have been ob-
tained, we can construct the affinity matrix ∈ ×W N N from the
similarities between every pair of observations. Formally, this
matrix is constructed using a Gaussian kernel given by

τ= − ( ( ) ( ))
ϵ ( )τ

⎛
⎝⎜

⎞
⎠⎟W

d z t z
exp

,
,

7
t,

where ϵ is the kernel scale. This parameters define the extent of
the local neighborhood of each sample z(t), so that if

τ( ( ) ( )) > ϵd z t z, , then ≈τW 0t, . In our work, we choose this para-
meter as the median of the pairwise distances τ( ( ) ( ))d z t z, , as this
provides a reasonable connection between all samples [14].

Let D be a diagonal ×N N matrix such that = ∑D Wt t j j t, , . Then,
we can define the normalized affinity matrix as

= − −W D WDnorm
1/2 1/2. Its eigenvectors, denoted by φi,

= … −i N0, , 1, are the same as those of the corresponding Graph
Laplacian, given by = −L I Wnorm. The key observation in the dif-
fusion maps algorithm is to define an embedding based on the
concept of diffusion distance between the variables θ ( )t and θ τ( ),
denoted by θ θγ τ( ( ) ( ))t , . Intuitively, this distance measures the
degree of connectivity between points θ ( )t and θ τ( ) in terms of the
graph corresponding to Wnorm. The reader is referred to [11] for
more details on this algorithm. This way, the low-dimensional
embedding is defined as a mapping between the observations
Φ ( )tz and the low-dimensional embedded vectors
ζ ( ) ∈ ( < )t d nd given by
( )ζ φ φ φΦ ( )↦ ( ) = ( ) ( ) … ( ) ( )t t t t tz , , , . 8d1 2

Note that because −D W1 is row-stochastic, φ0 is the diagonal of
D1/2 (with corresponding eigenvalue λ = 10 ), and it is therefore
ignored in the mapping. This embedding provides a low dimen-
sional representation of each observation, and takes into account
global information by depending on the entire matrix Wnorm (or L).
However, it also conveys an interesting local interpretation, as
samples which are close in the embedded space correspond to
samples with a low diffusion distance. Concretely, the Euclidean
distance in the embedded space provides an approximation to the
diffusion distance θ θγ τ( ( ) ( ))t , in the original domain2[11]; i.e.,

θ θ ζ ζγ τ τ( ( ) ( )) ≈ ∥ ( ) − ( )∥t t, 2. In the context of the study of dyna-
mical systems, these neighboring embedded samples correspond
to similar dynamics.

2.3. Latent variable inference in ECG

Before moving on to the description of the classification fra-
mework, we present here a case study of intrinsic variable in-
ference of a real biological signal. The diffusion maps algorithm
has been shown to be efficient in recovering the underlying states
of synthetic systems [12,14]. It has also been employed in several
studies to analyze real complex systems [31,32]. In particular, the
work in [14] presented an application of the ideas described in this
section to the prediction of epileptic seizures from intracranial
electroencephalographic (iEEG) signals. The authors demonstrated
how the intrinsic variable of the underlying system (the brain
cortex) presents a natural organization in the embedded space
depicting a transition from a normal to a pre-ictal state. However,
in this and many other cases, one can only assume to recover the
latent variable of these very complex systems, as there is no
ground truth or other physical indication that can be used for
comparison.

In the case of the analysis of ECG signals, however, we are able
to present more concrete evidence of the recovery of the intrinsic
variable involved. Even though many factors influence the evolu-
tion of a cardiac cycle and its encoding into an ECG signal, it is
known that these phenomena repeat in a cyclic (though not
strictly periodic) manner. In Fig. 1 (left) we present a typical ECG
signal, where each sample has been colored according to the
corresponding time within the respective cardiac cycle.3 We then
apply the diffusion maps algorithm, with the Scattering Transform
as an observer. We take highly overlapping windows (90%) em-
ploying an averaging time of 256 samples (roughly half a second,
given a sampling frequency is 500 Hz), and we set L¼40 samples
for the estimation of the covariance matrices. We recover the first
two eigenvectors from the affinity matrix, depicted in Fig. 1 (right),
where we color each embedded sample with the color of its cor-
responding sample in the time series. As can be seen, the em-
bedded samples are naturally organized into a cycle. Moreover,
observations corresponding to samples from similar stages within
the cardiac cycle remain close in the embedded space. Thus, these
samples are organized into an angular-varying variable in com-
pletely data-driven way, demonstrating the accurate recovery of
the underlying cardiac state.
3. System classification

Manifold learning methods provide a useful representation of
observations from a time-varying system, which can be exploited



1

2
3

4
5

6

Fig. 1. Analysis of an ECG signal (left) with the diffusion maps algorithm and the Scattering Transform as an observer. The signal is colored according to the stage within each
cardiac cycle, and each embedded point (right) is colored accordingly. The embedded points are naturally organized as a function of the stage within each cycle, demon-
strating the recovery of the intrinsic variable of the underlying system. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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for classification tasks. More specifically, we leverage the ability of
the above discussed algorithm to discriminate different dynamics
in a class-specific manner, obtaining a notion of distance between
a test signal and the different possible classes in the embedded
space.

3.1. Classification framework

Generalizing the above formulation, assume now signals zk(t)
belonging to the systems θk, controlled by latent variables θ ( )tk ,
for = …k K1, , , where K is the number of classes. Consider now
the problem of assigning a class to a test signal given by ˜( )z t .
Naturally, we assume ˜( )z t to be generated by a system with latent
variable θ̃( )t , and that θ θ˜( ) ≈ ( )t tj for some class j.

Consider further that all nonlinear observations through the
Scattering Transform are ordered column-wise in the matrix Φzk,
for each training signal, and Φz̃ for the test measurements. To
employ the diffusion maps algorithm, we construct virtual ob-
servation matrices Λk such that Λ Φ Φ= ˜ ∈ ×( + )⎡⎣ ⎤⎦ z z,k k

n N Nk , where
Nk and N are the number of observations from class k and from the
test signal, respectively. By concatenating the observations in this
manner, we are implicitly assuming that there is a corresponding
underlying latent variable λ ( )tk such that

λ
θ
θ

( ) =
( ) ≤

˜( − ) > ( )
⎪

⎧⎨
⎩t

t t N

t N t N

if

if . 9
k

k k

k k

Such a construction corresponds to a system governed by the la-
tent variable λ ( )tk , which behaves according to the dynamics given
by θ ( )tk for ≤t Nk. Once >t Nk, the latent variable changes to
θ̃( − )t Nk , the one of the testing signal, and whose dynamics we
want to study. From a different perspective, there is phase tran-
sition in the dynamics of λk around =t Nk, which reflects the
evolution of the system from θ ( )tk to θ̃( − )t Nk .

We then apply the diffusion maps algorithm to the observa-
tions in Λk, obtaining the embedded vectors ζ ( )tk . Denote as k
the set of embedded points from the known class ζ{ ( )} <tk t Nk, and
by k the set of testing points we want to compare to that class,
ζ{ ˜ ( )} >tk t Nk. Furthermore, denote by δk the distance between these

sets, such that ( )δ = dist ,k k k . This notion of distance, which
we will address in the following subsection, serves as an indication
of the similarity between the dynamics of a given class and that of
the test signal. Indeed, δk could be seen as a generalization of the
diffusion distance between two samples to the distance between
two sets of samples.

The key observation in this approach is that if the diffusion
distance θ θγ ( ˜),k is small, then ζ ζ≈ ˜

k k. In other words, if the latent
variables of both systems are similar, the set of corresponding
points do not diffuse much from each other, and the distance
between the given sets in the embedded space is small. In con-
trast, if the dynamics between the training and test observations
differ significantly, the embedded vectors ζ̃k will diffuse more,
indicating the dissimilarity between both dynamics. This way, the
classification of a testing signal ˜( )tz into a specific class is done by
repeating the above process for each class, yielding a set of dis-
tances δk, = …i K1, , . Once done, the correct class is chosen as the
one with the smallest distance δk. We summarize the proposed
approach in Algorithm 1.

Algorithm 1. Dynamical system classification based on diffusion
embeddings.
Data: Set of training samples { }( ) ≤ ≤z tk k K1
for each of the K

classes. Testing signal ˜( )z t .

Apply the nonlinear operator (the scattering transform) to
each signal, obtaining the set of observations

{ }Φ Φ( ) ˜( )≤ ≤z t z tand ;k k K1
for each class k do
( )

ζ ζ

δ

Λ Φ Φ

Λ

= ˜

−
= { ( )} = { ˜ ( )}

=

< >

⎡⎣ ⎤⎦

t t

dist

z z
Construct the virtual observation matrices

, ;

Apply the diffusion maps algorithm to

obtaining the sets of low dimensional embedded vectors:

and ;

Compute

,

k k

k

k k t N k k t N

k k k
end

Result: Chosen class δ* =k arg min

k
k.
3.2. Embedded distances

This method relies on the diffusion maps algorithm to separate
the embedded points according to the similarity of their dynamics.
Yet, the final classification performance depends on the robustness
of the distance according to which we define δk. In order to de-
monstrate the flexibility of this approach, we propose three al-
ternatives to defining this distance, each having its own inter-
pretation and implications.

The first alternative is motivated by an information theory
perspective and regards the embedded points as being random
processes drawn from a certain distribution. In this context, we
propose a method to measure the distance between the distribu-
tions of k and k with the Kullback–Leibler (KL) divergence [33].
This measure is not symmetric, and it is not a formal distance
measure. Nevertheless, the KL divergence is often employed to
obtain a distance between distributions. Assuming that samples in
the training set k come from a distribution Qk and that the
testing samples in k are drawn from a distribution Pk, the KL
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divergence is given by

∑δ ( ∥ ) = ( ) ( )
( ) ( )

P Q P t
P t
Q t

log .
10

k
KL

k k
t

k
k

k

This measure can be understood from the amount of in-
formation loss when samples from Pk are approximated with the
prior distribution or model Qk. In our context, we measure the
ability of the training samples in k to model the testing samples
in k. In practice, we might not have a sufficient amount of
samples to estimate the distributions Pk and Qk appropriately, and
therefore we turn to an estimation of this quantity. For the sake of
simplicity, we assume that these distributions are Gaussian, and
then we compute δ ( ∥ )P Qk

KL
k k explicitly by using the corre-

sponding covariance matrices, ΣQ and ΣP. In this case, the KL di-
vergence is given by

( ) ( )
( )δ

Σ Σ
Σ
Σ

μ μ Σ μ μ

∥

= + − + ( − ) −
( )

− −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P Q

d
1
2

tr log ,
11

k
KL

k k

Q P
Q

P
Q P

T
Q Q P

1 1

where μQ and μP are the respective mean vectors.
The second measure is based on a simple conditional prob-

ability interpretation. Indeed, given the distribution of the samples
ζ ( )t k, we want to address the probability of the samples ζ̃ ( )tk be-
longing to such distribution. Here again, the amount of samples
motivates us to model the distribution of k using a Gaussian
function with covariance Σk and mean μk, and then to compute the
likelihood ζ Σ μ( ˜ ( ) | )p t ,k k k . Once the probability of all samples has
been computed, several ways of quantifying the distance between
the distributions could be proposed. We have observed that the
median of these conditional probabilities provides a more robust
measure than other characterizations such as the mean. We
therefore employ this measure and define the following distance:

{ }ζδ Σ μ= ( ˜ ( )| )
( )

−⎛
⎝⎜

⎞
⎠⎟p tmedian , .

12k
P

t
k k k

1

Lastly, another perspective is to construct a distance measure
based on the (in)ability of a classifier to discriminate between the
different sets, in a more pragmatic approach. Under this point of
view, if a classifier cannot discriminate samples from different
distributions, we might conclude that these distributions are very
close. On the contrary, if a perfect classification is obtained, we can
define the distance between them as infinite. Formally, given the
linear classifier wk, we define

∑ ζδ = | − ( ( ) + )|
( )

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N

y t bw
1

sign ,
13

k
Cls

c t
t k

T
k k

1

where yt denotes the class and Nc is the number of vectors ζ ( )tk .
Recall that in this context, the class refers to either k or k. Also,
the reader should keep in mind that this is not a classical classi-
fication setup, and that the objective is to evaluate the ability of a
linear classifier to discriminate between the two groups. For this
reason we train and evaluate the classifier on all samples ζk and ζ̃k,
and then compute the classification error on the same data. In
particular, for the sake of simplicity, we use Fisher's Linear Dis-
criminant [34,35] as a classifier wk. It is worth noting that this
classifier makes the same assumptions that we used in modeling
the distributions of the training and testing samples for the
computation of the KL divergence; i.e., that the conditional prob-
ability distributions are normally distributed.

4. Experimental results

In this section, we first consider a toy problem to demonstrate
our approach in a controlled setup, and then move to the more
challenging problem of subject identification from ECG data.

4.1. Synthetic example

Let us first consider the toy problem of a time variant first order
autoregresive system with time deformations, which has been
used previously in a variety of applications, e.g., in [36,37]. The
system is characterized by the latent variable θk, and outputs the
time series zk(t). In discrete time = …t T1, , , this system is given
by

θ( ) = ( ) ( ) + ( + ( )) ( − )
( ) = ( − ( )) ( )

⎧⎨⎩
x t v t u t w t x t
z t x t g t

1
, 14

k k k

k k

1

where v(t) is a nuisance factor given by

π( ) = + ( ) ( )v t t T0.95 0.1 sin 2 / , 15

u(t) is a white Gaussian driving process and the variable g(t)
controls the time deformation of the system. We set this variable
to be

( ) = + *( ) + * ( ) ( )g t t T w t0.1 0.4 / 0.05 . 162

The system includes measurement (white Guassian) noise given
by ( )w t1 and ( )w t2 . We obtain 5 realizations of this system for

=T 10, 000, each with a different latent variable θk in the range
(�1,1). In particular, we employ θ = [ − − ]0.8, 0.6, 0, 0.6, 0.8k . The
training signals, for each value of the intrinsic parameter, are de-
picted on the left side of Fig. 2. The testing signals are obtained
through 5 other different realizations. We then apply Algorithm 1,
employing an averaging time of 32 samples, and a L¼5 samples
for the estimation of the covariance matrix.

In this synthetic example all distance measures, δkKL, δkP and
δkCls, manage to identify the corresponding latent variable in all
cases. To provide some insight into how the proposed method
works, on the right side of Fig. 2, we present the embeddings
obtained for a test signal corresponding to θ2. Specifically, we plot
the embedded samples ζk (in blue) and ζ̃k (in red) for each

= …k 1, , 5, where the testing signal is taken with θ θ˜ = 2. We ob-
serve that the further the value of the latent variable of the
training signal from that of θ2, the clearer the separation becomes
in the embedded space. In contrast, when the test signal is com-
pared to the training signal corresponding to the same parameter,
the distributions are practically equal.

These results provide a visual explanation of the distances
measured between the samples ζ̃k and ζk, shown in Fig. 3. There,
we see how all distances present a minimum at θ θ=k 2, indicating
the correct match. Moreover, these distances increase as the dif-
ference between the training and the testing latent variable be-
comes larger. In this scenario, the δkKL seems to provide a relatively
more robust measure, judging by the difference between its
minimum and its other values. This reflects the visual interpreta-
tion of the difference between the distributions observed in the
embedded space in Fig. 2. In contrast, δkCl and δkCl present a milder
decrease, though still they achieve 100% identification accuracy in
all cases.

4.2. Subject identification through ECG

We now apply the proposed approach to the problem of person
identification by performing recognition on electrocardiographic
(ECG) signals.

We examine the ECG-ID database,4 previously used for this task
by several authors [23,38,39]. This database comprises 310 ECG



Fig. 2. Synthetic experiment. Left: 5 realizations of the system in (14) for different values of the parameter θ. Right: The embeddings resulting from comparing a test signal
(not shown here) corresponding to θ2 against the training signal for each case. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 3. Distances δkKL, δkP and δk
Cls obtained in the Synthetic experiment for the case

when the testing signal corresponds to θ2.
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recordings, obtained from 90 subjects at different times and dif-
ferent conditions. The records were digitalized at 500 Hz, and they
are 20 seconds long. The number of records for each person varies
from 2 (collected during one day) to 20 (collected periodically over
6 months). The signals have gone through some basic
preprocessing to remove baseline-drift, high frequency and pow-
er-line noise. However, even after this basic filtering many signals
contain substantial noise and high-amplitude artifacts.

To provide some intuition on the proposed approach applied to
ECG identification, we first present a binary classification example
to show how in this case as well, where the underlying system is
very complex and with unknown parameters, the proposed ap-
proach correctly discriminates between different dynamics. In
Fig. 4(a) and (c) we present the ECG of two subjects, together with
a testing signal in Fig. 4(b), which belongs to the second subject.
We employ these records in particular for this demonstration since
the noise in the signal of Subject 2 degrades the training data
significantly, making the classification task challenging.

Even though it is hard or even impossible to distinguish vi-
sually the subject to which the testing signal belongs, the diffusion
maps algorithm, together with the invariance of the Scattering
Transform, manages to discriminate between them quite well.
When the observations from the test signal are embedded with
those corresponding to Subject 1, in Fig. 4(d), there is a natural
separation between the low-dimensional samples ζ ( )t (in blue
asterisks) and ζ̃ ( )t (in black circles). Conversely, the separation
between the test embedded samples and those from Subject 2 (in
red asterisks), in Fig. 4(e), is clearly smaller, indicating that this is
in fact the correct original system, or subject.



Fig. 4. ECG person identification demonstration. (a) and (c) are two training signals from Subject 1 and Subject 2, respectively. (b) is a test signal from Subject 2. (d) shows
the first three components of the embedded samples ζ ( )t1 and ζ̃ ( )t1 , and (e) shows the corresponding samples ζ ( )t2 and ζ̃ ( )t2 . While identifying the correct subject from the
test signal might seem difficult (or even impossible) by visual assessment, the proposed approach yields a clear result which indicates that the testing embedded samples (in
black circles) are closer to the dynamics of Subject 2 compared to Subject 1 (in asterisks). (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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When analyzing the entire dataset, few additional considera-
tions are needed. Due to the inhomogeneity in the number of
signals per subject, we employ the following procedure to select
the training and testing data, which we believe is a feasible sce-
nario in practical applications: if there are 6 or more records for
that subject, we select at random up to 5 training signals per
subject. Otherwise we take less than 5 to guarantee that at least
one signal per subject is not included in the training set, and it is
used as a testing signal for that patient. This results in a training
set comprising 180 records. This sampling procedure is repeated
20 times in order to introduce variability in the training and
testing conditions. We report the average accuracy, defined as the
number of correct classification results over the total number of
testing signals, together with their corresponding statistics.

We note that many signals contain blank intervals (where the
electrodes were probably disconnected). In addition, severe arti-
facts might occlude substantial information in other recordings. To
avoid such corrupted data, we implement a basic version of the
Pan–Tompkins algorithm [40] to identify QRS complexes, and only
employ data where such complexes are detected.5 Note, however,
that we do not perform a QRS segmentation as done in other
works [22,23]. The QRS detection is just a mean to select in-
formative data in an automated way, and the signal is analyzed as
one complete signal vector. Each training signal is analyzed by
applying the Scattering Transform, with 50% overlapping windows
of 128 samples (roughly a quarter of a second). Each observation
vector results in a dimension of n¼157. We employ L¼10 samples
to compute the covariance matrices, and use a dimension d¼10
for the diffusion embedding.

Regarding computational time, note that once the observations
vectors have been gathered, the classification procedure amounts
to applying the diffusion maps algorithm to the virtual observation
matrices Λk for each class (or subject), and computing the re-
spective distances. In the current setup, with 90 classes, this takes
5 If QRS complexes are not detected, we filter the signal discarding the ap-
proximation and last (highest frequency) detail coefficients of a 10 scales wavelet
decomposition in order to attenuate possible artifacts. If QRS complexes are not
detected after this basic filtering, the record is discarded.
approximately 4 minutes per testing signal with unoptimized code
in Matlab, in a PC with an Intel Core i7 CPU and 16 Gb of RAM.
Note, however, that our method is highly parallelizable, as the
diffusion maps algorithm can be applied to each Λk independently.

We compare our approach with a classifier composed of a
multi-class (linear) support vector machine (SVM). We train such a
classifier on the observation vectors obtained through the Scat-
tering Transform, exhibiting the benefit of shift and deformation
invariance but not the discriminative power of the diffusion maps
algorithm. We train the SVM on the same collection of training
data described above, and then run the classifier on the same
testing signals employed by our method. To provide a more
complete picture of the performance that can be achieved by
traditional classifiers, we include the results obtained by a multi-
class kernel SVM, where we have used a polynomial kernel of
degree 3. These nonlinear classifiers are able to provide more
complex hyperplanes and significantly better classification
accuracy.

Several points can be drawn from the results, presented in
Fig. 5. First of all, the Scattering Transform seems to be very ef-
fective in providing a good representation for the ECG signals. This
enables a simple linear SVM classifier to obtain an accuracy of
77.64%, in average. If instead we use a multi-class kernel SVM, this
accuracy is boosted to 91.12%. Our algorithm achieves the highest
classification results when used with the δkCls distance, reaching a
classification accuracy of 97.25%. Note that this is remarkable given
the very simple way of computing the distance in the embedded
space – especially when compared to kernel SVM. Moreover, this is
better than the best reported result for this database of 96% [23].

We also report that the distance based on the conditional
likelihood performs just as good as the Kernel SVM. Surprisingly,
the KL divergence does not enable a very effective classification in
this case, yielding similar results to that of the linear SVM. We
conjecture that the amount of samples in the embedded space
seriously limits the performance of these two probabilistic mea-
sures, in particular the KL divergence.

We conclude this section with a comment regarding the results
reported in [23] for the same database. Briefly, the authors employ
a QRS segmentation algorithm per subject, extracting these



Fig. 5. General classification results for the problem of subject identification. First
three methods are versions of the framework presented in this work. The first one
corresponds to the KL divergence measure, while the second and third to the
Conditional Likelihood and Fisher Linear Discriminant, respectively. The last two
are multi-class SVM (linear and polynomial kernel) classifiers. The whiskers denote
maximum and minimum values, the blue box limits the 25th and 75th percentile,
and the red line corresponds to the median for n¼20 realizations. (For inter-
pretation of the references to color in this figure caption,the reader is referred to
the web version of this paper.)
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segments and discarding those that deviate from the average be-
havior. They then construct a number of morphological features
from the processed QRS complexes after a correction or modula-
tion that depends on the measured the heart rate. In the final
classification stage, their method employs a Linear Discriminant
Analysis after a dimensionality reduction. While training on a
slightly higher number of samples (195 records over all, whereas
we train on 180), the authors in [23] report a classification accu-
racy of 96%. In contrast to [23], our method receives the input
signals as is; i.e., they are not pre-processed (segmented, nor-
malized, etc.) and they do not undergo a feature-extraction pro-
cess. Instead, it is up to our algorithm to extract relevant features
or information to aid the classification process. This demonstrates
the great benefit and power of data-driven algorithms, enabling to
perform just as well and even better than other, significantly more
elaborate and complex, classification schemes.
5. Conclusions

We have presented a classification method based on the dif-
fusion maps algorithm and the Scattering Transform. Leveraging
the ability of such manifold learning method to aggregate or se-
parate signal samples as a function of their dynamics, we employ
these ideas to the problem of dynamical system identification. The
proposed approach is general to the extent that different concepts
or notions can be used to quantify the distance between the low-
dimensional embedded samples, in a class-specific manner. We
demonstrate this by employing three distance measures.

The proposed algorithm is applied first to a synthetic example,
showing how these distance measures correlate with the distance
of the underlying latent variable. Moreover, we show its applic-
ability to real signals in the problem of subject identification from
ECG signals. When employed with the classification-based dis-
tance, our approach outperforms popular classification algorithms
and achieves the highest reported results for the database em-
ployed. Other distance measures provide a lower classification
accuracy, probably suffering from the relatively small number of
samples in the embedded space in this particular application. We
believe that other, more sophisticated, definitions or ways to
quantify the similarity between the embedded vectors will boost
the performance of the proposed scheme, not only in the problem
of ECG identification but also in other complex classification
applications. These, and other ideas, are the subject of current
ongoing work.
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