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Abstract—Image inpainting is concerned with the completion
of missing data in an image. When the area to inpaint is
relatively large, this problem becomes challenging. In these
cases, traditional methods based on patch models and image
propagation are limited, since they fail to consider a global
perspective of the problem. In this work, we employ a recently
proposed dictionary learning framework, coined Trainlets, to
design large adaptable atoms from a corpus of various datasets of
face images by leveraging the Online Sparse Dictionary Learning
algorithm. We therefore formulate the inpainting task as an
inverse problem with a sparse-promoting prior based on the
learned global model. Our results show the effectiveness of our
scheme, obtaining much more plausible results than competitive
methods.

I. INTRODUCTION

Image inpainting is a data completion problem that aims
to recover – or fill in – missing information in an degraded
image. These areas can be given by individual missing pixels
distributed along the image, or by continuous regions resulting
from scratches, foldings or other forms of degradation of old
photographs. In the extreme case where the area to inpaint
is relatively large (also known as hole-filling), this problem
becomes challenging [1].

This ill-posed problem, whose solution is often not even
well-defined, has received considerable attention in recent
years. Many inpainting approaches rely on Partial Differen-
tial Equations (PDF) [2], [3], variational formulations [4],
exemplar-based methods [5], sparsity-enforcing priors [6], [7]
and combinations of them [8], [9]. Despite their efficient
performance, all these works are restricted to either small areas
or to the task of object removal, by propagating and filling-in
a proper surrounding background.

Some problems, however, require a different approach. We
shall focus in the specific problem of inpainting large areas
of face images, like the case in Figure 1. As one could
foresee, traditional patch-based methods will not be effective
in recovering or estimating the missing data. Diffusion based
and content propagation approaches will also find this problem
too challenging. In fact, any method which seeks to inpaint the
missing region by propagating information from the available
image data will fail, as all these are oblivious to the fact that
they are inpainting a face. This missing information needs to
be provided in terms of a global model of the target image.

The task of obtaining an adaptive global model for high
dimensional signals is a hard problem. Some attempts include
manifold learning techniques, as in [10], where the authors
propose to learn an adaptable low-dimensional manifold for
images. This work includes inpainting examples on synthetic
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Fig. 1. Example of a inpainted image - left: Face image with missing eyes.
Right: inpainted result obtained with the proposed approach.

and texture data, though it is still far from providing a practical
solution for real world face images. The recent work in [11],
on the other hand, proposes the use of convolutional neural
networks to train a global model to inpaint large holes in
natural images. This network, however, was trained for general
(street) images and it does not apply to our specific problem.

In this work, we propose to build such a global prior em-
ploying sparse representations modeling and dictionary learn-
ing. The problem of dictionary learning consists of adaptively
learning a set of atoms which are able to represent real signals
as sparsely as possible, and has been a popular topic in signal
and image processing over the last decade [12], [13]. However,
due to the computational constraints that this problem entails,
all learning methods are typically applied on small patches
from the image and not on the image itself [14], [15]. In
other words, attempting to obtain such a global dictionary with
traditional dictionary learning algorithms would be infeasible.

A novel work which has circumvented this problem is the
recently proposed Trainlets framework [16], where the authors
proposed an Online Sparse Dictionary Learning (OSDL) algo-
rithm that is able to obtain large adaptable atoms from natural
images. Trainlets are built as linear (sparse) combinations
of atoms from a fast and analytical dictionary, that of the
novel Cropped Wavelets. This work [16] presented some initial
results on sparse approximation of face images - indicating
their effectiveness in modeling high dimensional data.

In this work we will formulate the inpainting task as an
inverse problem regularized by a sparse prior under a global
dictionary trained from publicly available datasets. Our results
indicate that the proposed approach is able to synthesize
missing information which is in a accordance with the global
context of the image, yielding natural reconstructed faces.

II. LEARNING THE MODEL

Sparse representations has shown to be a powerful prior in
several inverse problems in image processing (see [12] for a
thorough review). This model assumes that a signal y ∈ Rn

can be well approximated by a decomposition of the form Dx,
where D is a matrix of size n×m containing signal atoms in
its columns – termed dictionary –, and a sparse vector x ∈ Rm.
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Algorithm 1: Online Sparse Dictionary Learning
Data: Training samples {yi}, base-dictionary Φ, initial

sparse matrix A0

Initialization: GΦ = ΦTΦ; U = 0 ;
for j = 1, . . . , J do

Draw a mini-batch Yj at random;
Xj ← Sparse Code (Yj ,Φ,A

j ,Gj);
ηj = ||∇f(Aj

S)||F /‖Φ∇f(A
j
S)X

S
j ‖F ;

Uj+1
S = γUj

S + ηj ∇f(Aj
S);

Aj+1
S = Pk

[
Aj

S −Uj+1
S

]
;

Update columns and rows of G by(
Aj+1

)T
GΦAj+1

S
end
Result: Sparse Dictionary A

The problem of finding such a sparse vector is termed sparse
coding, and can formally be expressed as

min
x
‖x‖0 subject to ‖y −Dx‖2 ≤ ε, (1)

where ε is an allowed deviation in the representation, and
the `0 pseudo-norm is a count on the number of non-zero
elements of its argument. When the dictionary is of general
content (and overcomplete; i.e, m > n), this is an NP-hard
problem in general as it is combinatorial in nature. Yet, greedy
algorithms and convex relaxation alternatives allow for good
approximations of its solution in practice [17], [18].

When combined with the ability to learn the dictionary from
real data, and for a specific task, this model has yielded a
number of state of the art results [15], [19], [20], [21]. In its
general form, the dictionary learning (DL) problem reads as
follows

argmin
D,X

1

2
‖Y −DX‖2F subject to ‖xi‖0 ≤ p ∀i, (2)

where the matrix Y contains signal examples ordered column-
wise. This problem inherits the non-convexity induced by the
`0 pseudo-norm and adds the dictionary as a minimization
variable. Though a series of different algorithms have been
proposed [22], [14], [15], most methods undertake an alter-
nating minimization approach minimizing over X and D.

However successful, the dictionary learning problem has
traditionally been restricted to the domain of modeling small
image patches, thus limiting the kind of problem these meth-
ods can address. This limitation arises mainly from compu-
tational constraints, but also from the fact that the degrees
of freedom of the problem – and the amount data required
– become unmanageable as the dimension increases. Some
works have attempted to provide more efficient dictionary
learning algorithms. The work presented in [23] proposed to
lower the complexity of using (and learning) the dictionary
by suggesting an adaptable but completely separable struc-
ture, yielding an algorithm term SEDIL (Separable Dictionary
Learning). Though this is an interesting and effective idea,
the complete separability constraint is often too restrictive to
represent general images of high dimensions, and its batch-
learning algorithm is restricted to relatively small training sets.

Fig. 2. A subset of the obtained atoms by OSDL.

Recently, the work in [16] proposed the Online Sparse Dic-
tionary Learning (OSDL) algorithm which is able to manage
signals of dimensions in the order of the several thousands
and beyond. This approach builds on the work of [24], which
models the dictionary D as the product of a fast and efficient
base dictionary, and an adaptable sparse factor A. This lowers
the complexity of both, the degrees of freedom of the problem
and the computational cost of applying the dictionary. This
way, the dictionary learning problem is formulated as

min
A,X

1

2
||Y −ΦAX||2F subject to

{
||xi||0 ≤ p ∀i
||aj ||0 = k ∀j .

(3)
In particular, the authors in [16] employ a novel Cropped
Wavelets dictionary as the operator Φ, leveraging the multi-
scale analysis properties of wavelets while achieving a com-
pletely separable and border-effects free decomposition.

In order to cope with the increase of training data, the
work in [16] proposed a dictionary learning algorithm based
on ideas from stochastic optimization [25]. In a nutshell, the
algorithm performs sparse coding of a mini-batch of training
examples with (Sparse) OMP [26], and then updates a subset
of the dictionary atoms through a variation of the Normalized
Iterative Hard Thresholding algorithm [27]. For completion,
we present a summary of this method in Algorithm 1, and we
refer the reader to [16] for further details.

Tackling the learning of a global model for face images in
particular, we apply OSDL on a compendium of face images
taken from different datasets, using the freely available code at
the author’s website. To increase the variability of the training
data – and to obtain a more general model – we employ
images taken from the Chinese Passport dataset used in [28]
(both in its aligned and non aligned formats), the Chicago
Faces Database [29], the AT&T Faces Database1, and the
Cropped Yale Database [30]. All images were rescaled to a
size of 100 × 100 pixels, and employed as is; i.e., there was
no coherent scaling or alignment involved. All together, these
amounted to a training set of roughly 19,000 images. OSDL
took approximately 2 days to perform 40 data-sweeps2. We
employed the Cropped Wavelets as the base dictionary (with
Daubechies Wavelets with 4 vanishing moments), which has

1Freely available from AT&T Laboratories Cambridge’s website.
2We run our experiment on a Windows computer with an Intel Xeon E5

CPU, with 64 Gb of RAM running Windows 64 bits. However, no parallel
processing was used, and memory consumption did not exceed 16 Gb.
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a redundancy of ≈ 1.7. The matrix A was chosen to be tall
(under-complete), having 6,000 atoms in it. The atom sparsity
was set to 1000; i.e., these are only ≈ 6% sparse. We present
some of the obtained atoms in Figure 2, where one can see
that not only they resemble faces or face-features, but also the
obtained variability between different sizes and configurations.

III. INPAINTING FORMULATION

Once the global model has been obtained, we move to
describe in detail the inpainting formulation. Consider the
original image y0 ∈ Rn (n = 10, 000), and a mask M,
given by a binary matrix of size l × n, where l = c · n.
This way, c denotes the fraction of the pixels that have not
been removed (and remain) from the degraded image given
by y = My0. Given this degradation model, and leveraging
the obtained dictionary D, the inpainting inverse problem can
be cast in terms of a pursuit by adding a sparse regularization
term. Formally,

min
x
‖x‖0 subject to ‖y −MDx‖2 ≤ ε. (4)

This is nothing but the sparse coding problem presented in
Equation (1), with the incorporation of a degradation mask.
Unlike the sparse coding stage in Algorithm 1, we now turn
to a relaxation of this formulation moving from the `0 to the
`1 norm. This way, we replace the problem above with the
unconstrained optimization problem given by

min
x
‖y −MDx‖2 + λ‖x‖1, (5)

where λ is a the penalty parameter, compromising between
the desired sparsity and the (masked) fidelity term. The shift
from the `0 to the `1 norm is motivated by a practical aspect:
in the inpainting problem, where one does not known a priori
the number of non-zero elements needed to obtain a good
reconstruction (or the equivalent ε threshold), it is easier to
tune a penalty parameter λ. The number of non-zeros in
x might be larger than those employed during the training,
therefore making a greedy pursuit time consuming. In addition,
we have found this `1 approach to yield solutions that are
smoother, resulting in more naturally-looking inpainted areas.

Due to the convexity of the problem in Equation (5), a
variety of algorithms can be employed to find its solution.
Iterative shrinkage algorithms are particularly well-suited for
this kind of problems, and we employ FISTA as the specific
solver [31]3. Our implementation of this method benefits
from the relatively low-complexity of applying D. Indeed,
multiplying a vector by the dictionary (or its transpose) is
never done explicitly. Instead, this is computed in terms of the
product with the (very) sparse matrix A and the 1-dimensional
wavelet dictionaries, which represent the separable operator Φ.

IV. RESULTS

For our experiments, we applied the method described in
the previous section on a set of testing images, not included
in the training set. In order to demonstrate the benefits of
the proposed approach based on Trainlets, we compare with

3While we employ FISTA for the minimization of Equation (5), the learning
algorithm (OSDL) still employs OMP for the Sparse Coding stage.

Fig. 3. Inpainting results for increasing values of λ, from left to right. The
reader is referred to the supplementary material for a discussion on this point.

a number of other methods; namely: 1) the patch-propagation
method of [6], which employs a sparse (patch) prior to inpaint
the image, 2) a PCA (global) learned basis, and 3) the Separa-
ble Dictionary Learning (SEDIL) algorithm [23], which also
trains a global but separable dictionary. For this last method,
we trained two 1-dimensional dictionaries of size 100 × 200
on the same training set, employing the code provided by the
authors4. Note that both PCA and SEDIL obtain a set of global
adaptive atoms by enforcing some constraints: orthogonality
and separability, respectively.

The inpainting algorithm resulting from the minimization
of Equation (5) depends on the parameter λ, and its value
influences the quality of the final reconstruction. An example
is presented in Figure 3, where we inpaint the image on
the left with the proposed approach for increasing values of
this parameter. We expand on this point in the supplemen-
tary material accompanying this paper, and provide further
demonstrations of this effect. In our experiments, and for a
legitimate comparison, we run each method for a series of
values of this parameter and then selected the most plausible
results for each method separately5. The comparison with [6],
on the other hand, is not entirely fair: inpaiting methods based
on patch propagation are not expected to perform well in this
challenging problem, as they cannot inpaint elements (mouth,
eyes, etc) that do not appear in the available image region. Yet,
we include them for completion and in order to demonstrate
the intrinsic need of a global model.

We present a subset of our results in Figure 4, and more
examples can be found in the supplementary material. As
expected, the local method of [6] provides results that are
not in agreement with the global context. On the other hand,
the performance of SEDIL is limited, while PCA sometimes
manages to recover somewhat of a natural result. Still, the
constraints imposed by both of these two methods appear to
be too restrictive for this problem. As can be seen, Trainlets
provide the best results – often making it hard to distinguish
between the original and the synthetic inpainted image. Some
cases are particularly interesting: in the third image, where
the glare in the glasses occlude the left eye, our approach
manages to restore it; in the fourth image, we inpaint an eye
which was not originally there due to lighting conditions, still
in a plausible manner. More interesting examples can be found
in the supplementary material.

V. CONCLUSION

We have presented a simple inpainting algorithm which
exploits the representation power of Trainlets and the learning
capabilities of the OSDL algorithm, obtaining a global model

4Note that this is a batch method, and we employed 2,000 iterations.
Training with SEDIL took approximately 2.5 days, resulting in both dictionary
learning algorithms running for about the same time.

5Note that the selection of the best (most plausible) result is somewhat
subjective, for which we have used our most fair judgment.
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Fig. 4. Inpainting results. From left to right: masked image, patch propagation [6], PCA, SEDIL [23], Trainlets [16], and the original image.

for a diverse collection of face images. When this model
is deployed with a sparse prior, we obtain very plausible
reconstructions, outperforming competing methods. While the
comparison with CNN-based models, such as that in [11],
exceeds the scope of this work, we will be excited to see other
groups undertake this very interesting study. To facilitate such
comparisons, we give access to our Trainlets software package,
along with our trained model (dictionary) and inpainting code.

An interesting observation is that once a good global model
is at our disposal, there is no need for any extra algorithmic
manipulation of the data: there is no symmetry, exemplar-
based copying or other form of external regularization en-
forced in the reconstruction; this is naturally captured by the
learning process. Exploring the ability of a similar approach
in tackling other inverse problems is an interesting direction

of research and part of ongoing work. Finally, while the our
method is very effective in modeling images from a similar
class, employing this approach for the inpainting of large
areas in natural images is unlikely to succeed, as learning a
global model for such general cases is a significantly more
challenging task. In this case, improvements on the learning
algorithm (and the model) would be needed before attempting
to solve this kind of inverse problem.
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