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Abstract—Sparse representation has shown to be a very pow-
erful model for real world signals, and has enabled the develop-
ment of applications with notable performance. Combinedwith the
ability to learn a dictionary from signal examples, sparsity-inspired
algorithms are often achieving state-of-the-art results in a wide va-
riety of tasks. These methods have traditionally been restricted to
small dimensions mainly due to the computational constraints that
the dictionary learning problem entails. In the context of image
processing, this implies handling small image patches. In this work
we show how to efficiently handle bigger dimensions and go beyond
the small patches in sparsity-based signal and image processing
methods. We build our approach based on a new cropped Wavelet
decomposition, which enables a multi-scale analysis with virtually
no border effects.We then employ this as the base dictionarywithin
a double sparsity model to enable the training of adaptive dictio-
naries. To cope with the increase of training data, while at the same
time improving the training performance, we present an Online
Sparse Dictionary Learning (OSDL) algorithm to train this model
effectively, enabling it to handle millions of examples. This work
shows that dictionary learning can be up-scaled to tackle a new
level of signal dimensions, obtaining large adaptable atoms that we
call Trainlets.
Index Terms—Double-sparsity, K-SVD, dictionary learning,

cropped wavelet, on-line learning, trainlets, contourlets.

I. INTRODUCTION

S PARSE representations over redundant dictionaries have
shown to be a very powerful model for many real world

signals, enabling the development of applications with notable
performance in many signal and image processing tasks [1]. The
basic assumption of this model is that natural signals can be
expressed as a sparse linear combination of atoms, chosen from
a collection called a dictionary. Formally, for a signal ℝ ,
this can be described by , where ℝ
is a redundant dictionary that contains the atoms as its columns,
and ℝ is the representation vector.
Given the signal , finding its representation can be done in

terms of the following sparse approximation problem:
(1)

where is a permitted deviation in the representation accuracy,
and the expression is a count of the number of non-zeroes
in the vector . The process of solving the above optimization
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problem is commonly referred to as sparse coding. Solving this
problem is in general NP-hard, but several greedy algorithms
and other relaxations methods allow us to solve the problem ex-
actly under certain conditions [1] and obtain useful approximate
solutions in more general settings. These methods include MP,
OMP, BP and FOCUSS among others (see [2] for a review on
these topics).
A fundamental element in this problem is the choice of the

dictionary . While some analytically-defined dictionaries
(or transformations) such as the overcomplete Discrete Co-
sine Transform (ODCT) or Wavelet dictionaries were used
originally, learning the dictionary from signal examples for a
specific task has shown to perform significantly better [3]. This
adaptivity to the data allows sparsity-inspired algorithms to
achieve state-of-the-art results in many tasks. The dictionary
learning problem can be written as:

(2)

where ℝ is a matrix containing N signal examples,
and ℝ are the corresponding sparse vectors, both
ordered column wise. Several iterative methods have been pro-
posed to handle this task [4]–[6]. Due to the computational com-
plexity of this problem, all these methods have been restricted
to relatively small signals. When dealing with high-dimensional
data, the common approach is to partition the signal into small
blocks, where dictionary learning is more feasible.
In the context of image processing, small signals imply han-

dling small image patches. Most state-of-the-art methods for
image restoration exploit such a localized patch based approach
[7]–[9]. In this setting, small overlapping patches (7 7–11
11) are extracted from the corrupted image and treated

relatively independently according to some image model [9],
[10], sparse representations being a popular choice [11]–[14].
The full image estimation is then formed by merging together
the small restored patches by overlapping and averaging.
Some works have attempted to handle larger two dimensional

patches (i.e., greater than 16 16) with some success. In [15],
and later in [16], traditional K-SVD is applied in the Wavelet
domain. These works implicitly manage larger patches while
keeping the atom dimension small, noting that small patches of
Wavelet coefficients translate to large regions in the image do-
main. In the context of Convolutional Networks, on the other
hand, the work in [17] has reported encouraging state-of-art re-
sult on patches of size 17 17.
Though adaptable, explicit dictionaries are computationally

expensive to apply. Some efforts have been done in designing
fast dictionaries that can be both applied and learned efficiently.
This requirement implies constraining the degrees of freedom
of the explicit matrix in some way, i.e., imposing some struc-
ture on the dictionary. One such possibility is the search for
adaptable separable dictionaries, as in [18], or the search of a
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dictionary which is an image in itself as in [19], [20], lowering
the degrees of freedom and obtaining (close to) shift invariant
atoms. Another, more flexible alternative, has been the pursuit
of sparse dictionaries [21], [22]. In these works the dictionary
is composed of a multiplication of two matrices, one of which
is sparse. The work in [23] takes this idea a step further, com-
posing a dictionary from the multiplication of a sequence of
sparse matrices. In the interesting work reported in [24] the dic-
tionary is modeled as a collection of convolutions with sparse
kernels, lowering the complexity of the problem and enabling
the approximation of popular analytically-defined atoms. All of
these works, however, have not addressed dictionary learning
on real data of considerably higher dimensions or with a con-
siderably large dataset.
A related but different model from the one posed in (2) is the

analysis model [25], [26]. In this framework, a dictionary is
learned such that . A close variant is the Trans-
form Learning model, where it is assumed that and

, as presented in [27]. This framework presents in-
teresting advantages due to the very cheap sparse coding stage.
An online transform learning approach was presented in [28],
and a sparse transform model was presented in [29], enabling
the training on bigger image patches. In our work, however, we
constrain ourselves to the study of synthesis dictionary models.
We give careful attention to the model proposed in [21]. In

this work a double sparse model is proposed by combining a
fixed separable dictionary with an adaptable sparse component.
This lowers the degrees of freedom of the problem in (2), and
provides a feasible way of treating high dimensional signals.
However, the work reported in [21] concentrated on 2D and
3D-DCT as a base-dictionary, thus restricting its applicability
to relatively small patches.
In this work we expand on this model, showing how to ef-

ficiently handle bigger dimensions and go beyond the small
patches in sparsity-based signal and image processing methods.
This model provides the flexibility of incorporating multi-scale
properties in the learned dictionary, a property we deem vital
for representing larger signals. For this purpose, we propose to
replace the fixed base dictionary with a new multi-scale one.
We build our approach on cropped Wavelets, a multi-scale de-
composition which overcomes the limitations of the traditional
Wavelet transform to efficiently represent small images (ex-
pressed often in the form of severe border effects).
Another aspect that has limited the training of large dic-

tionaries has been the amount of data required and the
corresponding amount of computations involved. As the signal
size increases, a (significant) increase in the number of training
examples is needed in order to effectively learn the inherent
data structure. While traditional dictionary learning algorithms
require many sweeps of the whole training corpus, this is
no longer feasible in our context. Instead, we look to online
learning methods, such as Stochastic Gradient Decent (SGD)
[30]. These methods have gained prominence in recent years
with the advent of big data, and have been used in the context of
traditional (unstructured) dictionary learning [6] and in training
the special structure of the Image Signature Dictionary [19].
We present an Online Sparse Dictionary Learning (OSDL)
algorithm to effectively train the double-sparsity model. This
approach allows us to handle very large training sets while
using high dimensional signals, achieving faster convergence

than the batch alternative and providing a better treatment of
local minima, which are abundant in non-convex dictionary
learning problems.
To summarize, this paper introduces a novel online dictionary

learning algorithm, which builds a structured dictionary based
on the double-sparsity format. The base dictionary proposed is
a fully-separable cropped Wavelets dictionary that has virtually
no boundary effects. The overall dictionary learning algorithm
can be trained on a corpus of millions of examples, and is ca-
pable of representing images of size 64 64 and even more,
while keeping the training, the memory, and the computational
load reasonable and manageable. This high-dimensional dictio-
nary learning framework, termed Trainlets, shows that global
dictionaries for entire images are feasible and trainable. We
demonstrate the applicability of the proposed algorithm and its
various ingredients in this paper, and we accompany this work
with a freely available software package.
This paper is organized as follows. In Section II we review

sparse dictionary models. In Section III we introduce the
cropped Wavelets showing their advantages over standard
Wavelets, and in Section IV we present the Online Sparse
Dictionary Learning algorithm. In Section V we present several
experiments and applications to image processing, comparing
the OSDL algorithm to related methods, demonstrating the
benefits of our approach. In Section VI we conclude the paper.

II. SPARSE DICTIONARIES

Learning dictionaries for large signals requires adding some
constraint to the dictionary, otherwise signal diversity and
the number of training examples needed make the problem
intractable. Often, these constraints are given in terms of a
certain structure. One such approach is the double-sparsity
model [21]. In this model the dictionary is assumed to be a
multiplication of a fixed operator (we will refer to it as the
base dictionary) by a sparse adaptable matrix . Every atom
in the effective dictionary is therefore a linear combination
of few and arbitrary atoms from the base dictionary. Formally,
this means that the training procedure requires solving the
following problem:

(3)

Note that the number of columns in and might differ,
allowing flexibility in the redundancy of the effective dictio-
nary. The authors in [21] used an over-complete Discrete Co-
sine Transform (ODCT) as the base dictionary in their exper-
iments. Using Wavelets was proposed but never implemented
due both to implementation issues (the traditionalWavelet trans-
form is not entirely separable) and to the significant border-ef-
fects Wavelets have in small-to-medium sized patches. We ad-
dress both of these issues in the following section.
As for the training of such a model, the update of the dic-

tionary is now constrained by the number of non-zeros in the
columns of . In [21] a variant of the K-SVD algorithm (termed
Sparse K-SVD) was proposed for updating the dictionary. As
the work in [4], this is a batch method that updates every atom
sequentially. In the context of the double-sparsity structure, this
task is converted into a sparse-coding problem, and approxi-
mated by the greedy OMP algorithm.
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In the recent inspiring work reported in [23] the authors ex-
tended the double-sparsity model to a scenario where the base
dictionary itself is a multiplication of several sparse matrices,
that are to be learned. While this structure allows for a clear de-
crease in the computational cost of applying the dictionary, its
capacity to treat medium-size problems is not explored. The pro-
posed algorithm involves a hierarchy of matrix factorizations
with multiple parameters to be set, such as the number of levels
and the sparsity of each level.

III. A NEW WAVELETS DICTIONARY

The double sparsity model relies on a base-dictionary which
should be computationally efficient to apply. The ODCT dic-
tionary has been used for this purpose in [21], but its applica-
bility to larger signal sizes is weak. Indeed, as the patch size
grows—getting closer to an image size—the more desirable a
multi-scale analysis framework becomes. The separability of
the base dictionary provides a further decrease in the compu-
tational complexity. Applying two (or more) 1D dictionaries on
each dimension separately is typically much more efficient than
an equivalent non-separable multi-dimensional dictionary. We
will combine these two characteristics as guidelines in the de-
sign of the base dictionary for our model.

A. Optimal Extensions and Cropped Wavelets
The two dimensionalWavelet transform has shown to be very

effective in sparsifying natural (normal sized) images. When
used to analyze small or medium sized images, not only is the
number of possible decomposition scales limited, but more im-
portantly the border effects become a serious limitation. Other
works have pointed out the importance of the boundary condi-
tions in the context of deconvolution [31], [32]. However, our
approach is different from these, as we will focus on the basis
elements rather than on the signal boundaries, and in the pursuit
of the corresponding coefficients.
In order to build (bi-)orthogonal Wavelets over a finite (and

small) interval, one usually assumes their periodic or symmetric
extension onto an infinite axis. A third alternative, zero-padding,
assumes the signal is zero outside of the interval. However,
none of these alternatives provides an optimal approximation
of the signal borders. In general, all these methods do not pre-
serve their vanishing moments at the boundary of the interval,
leading to additional non-zero coefficients corresponding to the
basis functions that overlap with the boundaries [33]. An alter-
native is to modify the Wavelet filters such that they preserve
their vanishing moments at the borders of the interval, although
constructing suchWavelets while preserving their orthogonality
is complicated [34].
We begin our derivation by looking closely at the

zero-padding case. Let be a finite signal. Consider
, the zero-padded version of , where
( is “big enough”). Considering the Wavelet analysis

matrix of size , the Wavelet representation coeffi-
cients are obtained by applying the Discrete Wavelet Transform
(DWT) to , which can be written as . Note that
this is just a projection of the (zero-padded) signal onto the
orthogonal Wavelet atoms. As for the inverse transform, the
padded signal is recovered by applying the inverse Wavelet
transform or Wavelet synthesis operator ( ,
assuming orthogonal Wavelets), of size to the coefficients

. Lastly, the padding is discarded (multiplying by ) to
obtain the final signal in the original finite interval:

(4)

Zero-padding is not an option of preference because it intro-
duces discontinuities in the function that result in large (and
many) Wavelet coefficients, even if is smooth inside the fi-
nite interval. This phenomenon can be understood from the fol-
lowing perspective: we are seeking the representation vector
that will satisfy the perfect reconstruction of

(5)

The matrix serves here as the effective dictionary that
multiplies the representation in order to recover the signal. This
relation is an under-determined linear system of equations with
equations and unknowns, and thus it has infinitely many

possible solutions.
In fact, zero padding chooses a very specific solution to the

above system, namely, . This is nothing but the
projection of the signal onto the adjoint of the above-mentioned
dictionary, since . While this is indeed a
feasible solution, such a solution is expected to have many non-
zeros if the atoms are strongly correlated. This indeed occurs for
the finite-support Wavelet atoms that intersect the borders, and
which are cropped by .
To overcome this problem, we propose the following alterna-

tive optimization objective:

(6)

i.e., seeking the sparsest solution to this under-determined linear
system. Note that in performing this pursuit, we are implicitly
extending the signal to become , which is the
smoothest possible with respect to the Wavelet atoms (i.e., it
is sparse under the Wavelet transform). At the same time, we
keep using the original Wavelet atoms with all their properties,
including their vanishing moments. On the other hand, we pay
the price of performing a pursuit instead of a simple back-pro-
jection. In particular, we use OMP to approximate the solution
to this sparse coding problem. To conclude, our treatment of the
boundary issue is obtained by applying the cropped Wavelets
dictionary , and seeking the sparsest represen-
tation with respect to it, implicitly obtaining an extension of
without boundary problems.
To illustrate our approach, in Fig. 1 we show the typical pe-

riodic, symmetric and zero-padding border extensions applied
to a random smooth function, as well as the ones obtained by
our method. As can be seen, this extension—which is nothing
else than Wavelet atoms that fit in the borders in a natural
way—guarantees not to create discontinuities which result in
denser representations1. Note that we will not be interested in
the actual extensions explicitly in our work.
To provide further evidence on the better treatment of the

borders by the cropped Wavelets, we present the following
experiment. We construct 1,000 random smooth functions of

1A similar approach was presented in [35] in the context of compression.
The authors proposed to optimally extend the borders of an irregular shape in
the sense of minimal -norm of the representation coefficients under a DCT
transform.
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Fig. 1. Different border treatments: (a) periodic, (b) symmetric, (c) zero-padding, and (d) the resulting optimized extension signal .

Fig. 2. Mean approximation (using 5 coefficients) error per sample of smooth
functions of length 64 with a discontinuity at sample 32.

length 64 (3rd degree polynomials), and introduce a random
step discontinuity at sample 32. These signals are then nor-
malized to have unit -norm. We approximate these functions
with only 5 Wavelet coefficients, and measure the energy of the
point-wise (per sample) error (in -sense) of the reconstruction.
Fig. 2 shows the mean distribution of these errors2. As expected,
the discontinuity at the center introduces a considerable error.
However, the traditional (periodic) Wavelets also exhibit sub-
stantial errors at the borders. The proposed cropped Wavelets,
on the other hand, manage to reduce these errors by avoiding
the creation of extra discontinuities.
Practically speaking, the proposed cropped Wavelet dictio-

nary can be constructed by taking a Wavelet synthesis matrix
for signals of length and cropping it. Also, and because we
will be making use of greedy pursuit methods, each atom is nor-
malized to have unit norm. This way, the cropped Wavelets
dictionary can be expressed as

where is a diagonal matrix of size with values such
that each atom (column) in (of size ) has a unit norm3.
The resulting transform is no longer orthogonal, but this—now

2The m-term approximation with Wavelets is performed with the traditional
non-linear approximation scheme. In this framework, orthogonal Wavelets with
periodic extensions perform better than symmetric extensions or zero-padding,
which we therefore omit from the comparison. We used for this experiment
Daubechies Wavelets with 13 taps. All random variables were chosen from
Gaussian distributions.

3Because the atoms in are compactly supported, some of them may be
identically zero in the central samples. These are discarded in the construction
of .

redundant—Wavelet dictionary solves the borders issues of tra-
ditional Wavelets enabling for a lower approximation error.
Just as in the case of zero-padding, the redundancy obtained

depends on the dimension of the signal, the number of decom-
position scales and the length of the support of the Wavelet fil-
ters (refer to [33] for a thorough discussion). In practice, we
set ; i.e., twice the closest higher power of 2
(which reduces to if is a power of two, yielding a
redundancy of at most 2) guaranteeing a sufficient extension of
the borders.

B. A Separable 2-D Extension
The one-dimensional Wavelet transform is traditionally ex-

tended to treat two-dimensional signals by constructing two-di-
mensional atoms as the separable product of two one-dimen-
sional ones, per scale [33]. This yields three two-dimensional
Wavelet functions at each scale , implying a decomposition
which is only separable per scale. This means cascading this
two-dimensional transform on the approximation band at every
scale.
An alternative extension is a completely separable construc-

tion. Considering all the basis elements of the 1-D DWT (in all
scales) arranged column-wise in the matrix , the 2-D sep-
arable transform can be represented as the Kronecker product

. This way, all properties of the transform
translate to each of the dimensions of the 2-dimensional signal
on which is applied. Now, instead of cascading down a
two-dimensional decomposition, the same 1-D Wavelet trans-
form is applied first to all the columns of the image and then to
all the rows of the result (or vice versa). In relatively small im-
ages, this alternative is simpler and faster to apply compared to
the traditional cascade. This modification is not only applicable
to the traditional Wavelet transform, but also to the cropped
Wavelets dictionary introduced above. In this 2-D set-up, both
vertical and horizontal borders are implicitly extended to pro-
vide a sparser Wavelet representation.
We present in Fig. 3 the 2-D atoms of the Wavelet (Haar)

Transform for signals of size 8 8 as an illustrative example.
The atoms corresponding to the coarsest decomposition scale
and the diagonal bands are the same in both separable and non-
separable constructions. The difference appears in the vertical
and horizontal bands (at the second scale and below). In the
separable case we see elongated atoms, mixing a low scale in
one direction with high scale in the other.

C. Approximation of Real World Signals
While it is hard to rank the performance of separable versus

non-separable analytical dictionaries or transforms in the
general case, we have observed that the separable Wavelet
transform provides sparser representations than the traditional
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Fig. 3. 2-D atoms of the Wavelet (Haar) transform for patches of size 8
8—the separable versus the traditional construction.

Fig. 4. Left: Random set of some of the images used for the M-Term ap-
proximation Experiment. Right: M-Term approximation by the traditional 2-D
Wavelets and the separable and cropped Wavelets on real images of size 64
64.

2-D decomposition on small-medium size images. To demon-
strate this, we take 1,000 image patches of size 64 64 from
popular test images, and compare the m-term approximation
achieved by the regular two-dimensional Wavelet transform,
the completely separable Wavelet transform and our separable
and cropped Wavelets. A small subset of these patches is
presented on the left of Fig. 4. These large patches are in
themselves small images, exhibiting the complex structures
characteristic of real world images.
As we see from the results in Fig. 4(right), the separability

provides some advantage over regular Wavelets in repre-
senting the image patches. Furthermore, the proposed separable
cropped Wavelets give an even better approximation of the data
with fewer coefficients.
Before concluding this section, we make the following re-

mark. It is well known that Wavelets (separable or not) are far
from providing an optimal representation for general images
[33], [36], [37]. Nonetheless, in this work these basis functions
will be used only as the base dictionary, while our learned dic-
tionary will consist of linear combinations thereof. It is up to the
learning process to close the gap between the sub-optimal rep-
resentation capability of the Wavelets, and the need for a better
two dimensional representation that takes into account edge ori-
entation, scale invariance, and more.

IV. ONLINE SPARSE DICTIONARY LEARNING
As seen previously, the de-facto method for training the

doubly sparse model has been a batch-like process. When
working with higher dimensional data, however, the required

amount of training examples and the corresponding computa-
tional load increase. In this big-data (ormedium-data) scenario,
it is often unfeasible or undesired to perform several sweeps
over the entire data set. In some cases, the dimensionality and
amount of data might restrict the learning process to only a
couple of iterations. In this regime of work it may be impossible
to even store all training samples in memory during the training
process. In an extreme online learning set-up, each data sample
is seen only once as new data flows in. These reasons lead
naturally to the formulation of an online training method for
the double-sparsity model. In this section, we first introduce a
dictionary learning method based on the Normalized Iterative
Hard-Thresholding algorithm [38]. We then use these ideas
to propose an Online Sparse Dictionary Learning (OSDL)
algorithm based on the popular Stochastic Gradient Descent
technique, and show how it can be applied efficiently to our
specific dictionary learning problem.

A. NIHT-Based Dictionary Learning

A popular practice in dictionary learning, which has been
shown to be quite effective, is to employ a block coordinate
minimization over this non-convex problem. This often reduces
to alternating between a sparse coding stage, throughout which
the dictionary is held constant, and a dictionary update stage in
which the sparse coefficients (or their support) are kept fixed.
We shall focus on the second stage, as the first remains un-
changed, essentially applying sparse coding to a group of exam-
ples. Embarking from the objective as given in (3), the problem
to consider in the dictionary update stage is the following:

(7)

where is the base dictionary of size and is a matrix
of size with non-zeros per column. Many dictionary
learning methods undertake a sequential update of the atoms in
the dictionary ([4], [6], [21]). Following this approach, we can
consider minimization problems of the following form:

(8)

where is the error given by and de-
notes the -th row of . This problem produces the -th column
in , and thus we sweep through to update all of
.
The Normalized Iterative Hard-Thresholding (NIHT) [38] al-

gorithm is a popular sparse coding method in the context of
Compressed Sensing [39]. This method can be understood as
a projected gradient descent algorithm. We can propose a dic-
tionary update based on the same concept. Note that we could
rewrite the cost function in (8) as , for
an appropriate operator . Written in this way, we can perform
the dictionary update in terms of the NIHT by iterating:

(9)

where is the adjoint of is a Hard-Thresholding oper-
ator that keeps the largest non-zeros (in absolute value), and
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is an appropriate step-size. This algorithm iterates over (9)
until convergence per atom in the dictionary update stage.
The choice of the step size is critical. Noting that

, in [38] the authors propose to set this
parameter per iteration as:

(10)

where denotes the support of . With this step size, the
estimate is obtained by performing a gradient step and
hard-thresholding as in (10). Note that if the support of
and are the same, setting as in (10) is indeed optimal, as it
is the minimizer of the quadratic cost w.r.t. . In this case, we
simply set . If the support changes after applying

, however, the step-size must be diminished until a condition
is met, guaranteeing a decrease in the cost function4. Following
this procedure, the work reported in [38] shows that the algo-
rithm in (9) is guaranteed to converge to a local minimum of
the problem in (8).
Consider now the algorithm given by iterating between 1)

sparse coding of all examples in , and 2) atom-wise dictionary
update with NIHT in (8). An important question that arises is:
will this simple algorithm converge? Let us assume that the pur-
suit succeeds, obtaining the sparsest solution for a given sparse
dictionary , which can indeed be guaranteed under certain
conditions. Moreover, pursuit methods like OMP, Basis Pursuit
and FOCUSS perform very well in practice when (refer
to [2] for a thorough review). For the cases where the theoretical
guarantees are not met, we can adopt an external interference
approach by comparing the best solution using the support ob-
tained in the previous iteration to the one proposed by the new
iteration of the algorithm, and choosing the best one. This small
modification guarantees a decrease in the cost function at every
sparse coding step. The atom-wise update of the dictionary is
also guaranteed to converge to a local minimum for the above
mentioned choice of step sizes. Performing a series of these al-
ternating minimization steps ensures a monotonic reduction in
the original cost function in (2), which is also bounded from
below, and thus convergence to a fixed point is guaranteed.
Before moving on, a word on the characteristics of trained

dictionaries is in place. The recovery guarantees of pursuit
methods is generally formulated in terms of properties of the
dictionary, such as its mutual coherence or its Restricted Isom-
etry Property (RIP) [1]. While dictionary learning provides
better and sparser representations for real data, this adaptive
process generally deteriorates these measures. A trained dic-
tionary does not typically exhibit low correlation between its
atoms, and so the corresponding results (which are worst-case
scenario analyses) say very little about the quality of the ob-
tained dictionary. As we shall see in the results section, this
does not imply a deterioration of its practical performance; on
the contrary, their effectiveness in image representation and
restoration is greatly improved.

4The step size is decreased by , where . We refer the reader
to [39] and [38] for further details.

B. From Batch to Online Learning
As noted in [6], [19], it is not compulsory to accumulate all

the examples to perform an update in the gradient direction. In-
stead, we turn to a stochastic (projected) gradient descent ap-
proach. In this scheme, instead of computing the expected value
of the gradient by the sample mean over all examples, we esti-
mate this gradient over a single randomly chosen example .
We then update the atoms of the dictionary based on this esti-
mation using:

(11)

Since these updates might be computationally costly (and be-
cause we are only performing an alternating minimization over
problem (3)), we might stop after a few iterations of applying
(11). We also restrict this update to those atoms that are used
by the current example (since others have no contribution in
the corresponding gradient). In addition, instead of employing
the step size suggested by the NIHT algorithm, we employ the
common approach of using decreasing step sizes throughout the
iterations, which has been shown beneficial in stochastic opti-
mization [30]. To this end, and denoting by the step size re-
sulting from the NIHT, we employ an effective learning rate of

, with a manually set parameter . This modification does
not compromise the guarantees of a decrease in the cost func-
tion (for the given random sample ), since this factor is always
smaller than one. We outline the basic stages of this method in
Algorithm 1.
An important question that now arises is whether shifting

from a batch training approach to this online algorithm pre-
serves the convergence guarantees described above. Though
plenty is known in the field of stochastic approximations,
most of the existing results address convergence guarantees
for convex functions, and little is known in this area regarding
projected gradient algorithms [40]. For non-convex cases,
convergence guarantees still demand the cost function to be
differentiable with continuous derivatives [30]. In our case, the

pseudo-norm makes a proof of convergence challenging,
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since the problem becomes not only non-convex but also
(highly) discontinuous.
That said, one could re-formulate the dictionary learning

problem using a non-convex but continuous and differentiable
penalty function, moving from a constrained optimization
problem to an unconstrained one. We conjecture that conver-
gence to a fixed point of this problem can be reached under
the mild conditions described in [30]. Despite these theoretical
benefits, we choose to maintain our initial formulation in terms
of the measure for the sake of simplicity (note that we need
no parameters other than the target sparsity). Practically, we
saw in all our experiments that convergence is reached, pro-
viding numerical evidence for the behavior of our algorithm.

C. OSDL in Practice

We now turn to describe a variant of the method described
in Algorithm 1, and outline other implementation details. The
atom-wise update of the dictionary, while providing a specific
step-size, is computationally slower than a global update. In ad-
dition, guaranteeing a decreasing step in the cost function im-
plies a line-search per atom that is costly. For this reason we
propose to replace this stage by a global dictionary update of
the form

(12)

where the thresholding operator now operates in each column of
its argument. While we could maintain a NIHT approach in the
choice of the step-size in this case as well, we choose to employ

(13)

Note that this is the square-root of the value in (10) and it may
appear as counter-intuitive. We shall present a numerical justi-
fication of this choice in the following section.
Secondly, instead of considering a single sample per it-

eration, a common practice in stochastic gradient descent algo-
rithms is to consider mini-batches of examples arranged
in the matrix . As explained in detail in [41], the computa-
tional cost of the OMP algorithm can be reduced by precom-
puting (and storing) the Gram matrix of the dictionary , given
by . In a regular online learning scheme, this would
be infeasible due to the need to recompute this matrix for each
example. In our case, however, the matrix needs only to be up-
dated once per mini-batch. Furthermore, only a few atoms get
updated each time. We exploit this by updating only the respec-
tive rows and columns of the matrix . Moreover, this update
can be done efficiently due to the sparsity of the dictionary .
Stochastic algorithms often introduce different strategies to

regularize the learning process and try to avoid local minimum
traps. In our case, we incorporate in our algorithm a momentum
term controlled by a parameter . This term helps
to attenuate oscillations and can speed up the convergence by
incorporating information from the previous gradients. This al-
gorithm, termed Online Sparse Dictionary Learning (OSDL) is
depicted in Algorithm 2. In addition, many dictionary learning
algorithms [4], [6] include the replacement of (almost) unused
atoms and the pruning of similar atoms. We incorporate these
strategies here as well, checking for such cases once every few
iterations.

D. Complexity Analysis

We now turn to address the computational cost of the pro-
posed online learning scheme5. As was thoroughly discussed
in [21], the sparse dictionary enables an efficient sparse coding
step. In particular, any multiplication by , or its transpose, has
a complexity of , where is the number
of atoms in (assume for simplicity square), is the atom
sparsity and is the complexity of applying the base dictio-
nary. For the separable case, this reduces to .
Using a sparse dictionary, the sparse coding stage with OMP

(in its Cholesky implementation) is per ex-
ample. Considering examples in a mini-batch, and assuming

and , we obtain a complexity of
.
Moving to the update stage in the OSDL algorithm,

calculating the gradient has a complexity of
, and so does the calculation of

the step size. Recall that is the set of atoms used by the
current samples, and that ; i.e., the update is applied
only on a subset of all the atoms. Updating the momentum
variable grows as , and the hard thresholding operator
is . In a pessimistic approach, assume .
Putting these elements together, the OSDL algorithm has a

complexity of per mini-batch.
The first term depends on the number of examples per mini-
batch, and the second one depends only on the size of the dictio-
nary. For high dimensions (large ), the first term is the leading
one. Clearly, the number of non-zeros per atom determines the
computational complexity of our algorithm. While in this study
we do not address the optimal way of scaling , experiments
shown hereafter suggest that its dependency with might in fact
be less than linear. The sparse dictionary provides a computa-
tional advantage over the online learning methods using explicit
dictionaries, such as [6], which have complexity of .

5We analyze the complexity of just the OSDL for simplicity. The analysis of
Algorithm 1 is similar, adding the complexity of the line search of the step sizes.



SULAM et al.: TRAINLETS: DICTIONARY LEARNING IN HIGH DIMENSIONS 3187

Fig. 5. Experiment 1: Dictionary learning by Sparse K-SVD, by the Stochastic NIHT presented in Algorithm 1, the ODL algorithm [42] and by the Online Sparse
Dictionary Learning (OSDL).

V. EXPERIMENTS

In this section we present a number of experiments to il-
lustrate the behavior of the method presented in the previous
section. We start with a detailed experiment on learning an
image-specific dictionary. We then move on to demonstrations
on image denoising and image compression. Finally we tackle
the training of universal dictionaries on millions of examples
in high dimensions.

A. Image-Specific Dictionary Learning

To test the behaviour of the proposed approach, we present
the following experiment. We train an adaptive sparse dictio-
nary in three setups of increasing dimension: with patches of
size 12 12, 20 20 and 32 32, all extracted from the pop-
ular image Lena, using a fixed number of non-zeros in the sparse
coding stage (4, 10 and 20 non-zeros, respectively). We also re-
peat this experiment for different levels of sparsity of the dictio-
nary . We employ the OSDL algorithm, as well as the method
presented in Algorithm 1 (in its mini-batch version, for com-
parison). We also include the results by Sparse K-SVD, which
is the classical (batch) method for the double sparsity model,
and the popular Online Dictionary Learning (ODL) algorithm
[42]. Note that this last method is an online method that trains a
dense (full) dictionary. Training is done on 200,000 examples,
leaving 30,000 as a test set.
The sparse dictionaries use the cropped Wavelets as their op-

erator , built using the SymletWavelet with 8-taps. The redun-
dancy of this base dictionary is 1.75 (in 1-D), and the matrix
is set to be square, resulting in a total redundancy of just over

3. For a fair comparison, we initialize the ODL method with the
same croppedWavelets dictionary. All methods use OMP in the
sparse coding stage. Also, note that the ODL6 algorithm is im-
plemented entirely in C, while in our case this is only true for
the sparse coding, giving the ODL somewhat of an advantage
in run-time.
The results are presented in Fig. 5, showing the representation

error on the test set, where each marker corresponds to an epoch.
The atom sparsity refers to the number of non-zeros per column
of with respect to the signal dimension (i.e., 5% in the 12 12
case implies 7 non-zeros). Several conclusions can be drawn
from these results. First, as expected, the online approaches pro-
vide a much faster convergence than the batch alternative. For
the low dimensional case, there is little difference between Al-
gorithm 1 and the OSDL, though this difference becomes more
prominent as the dimension increases. In these cases, not only
does Algorithm 1 converge slower but it also seems to be more
prone to local minima.
As the number of non-zeros per atom grows, the represen-

tation power of our sparse dictionary increases. In particular,
OSDL achieves the same performance as ODL for an atom spar-
sity of 25% for a signal dimension of 144. Interestingly, OSDL
and ODL achieve the same performance for decreasing number
of non-zeros in as the dimension increases: 10% for the 20
20 case and % for the 32 32. In this higher dimensional

setting, not only does the sparse dictionary provide faster con-
vergence but it also achieves a lower minimum. The lower de-
grees of freedom of the sparse dictionary prove beneficial in this

6We used the publicly available SPArse Modeling Software package, at http:/
/spams-devel.gforge.inria.fr/.
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Fig. 6. Step sizes obtained by the atom-wise NIHT algorithm together with
their mean value, and the global approximation by OSDL.

context7, where the amount of training data is limited and per-
haps insufficient to train a full dictionary. This example suggests
that indeed could grow slower than linearly with the dimen-
sion .
Before moving on, we want to provide some empirical evi-

dence to support the choice of the step size in the OSDL algo-
rithm. In Fig. 6 we plot the atom-wise step sizes obtained by
Algorithm 1, (i.e., the optimal values from the NIHT per-
spective), together with their mean value, as a function of the
iterations for the 12 12 case for illustration. In addition, we
show the global step sizes of OSDL as in (13). As can be seen,
this choice provides a fair approximation to the mean of the in-
dividual step sizes. Clearly, the square of this value would be
too conservative, yielding very small step sizes and providing
substantially slower convergence.

B. Image Restoration Demonstration
In the context of image restoration, most state-of-the-art al-

gorithms take a patch-based approach. While the different al-
gorithms differ in the models they enforce on the corrupted
patches (or the prior they chose to consider, in the context a
Bayesian formulation) the general scheme remains very much
the same: overlapping patches are extracted from the degraded
image, then restored more or less independently, before being
merged back together by averaging. Though this provides an
effective option, this locally-focused approach is far from being
optimal. As noted in several recent works ([16], [43], [44]), not
looking at the image as a whole causes inconsistencies between
adjacent patches which often result in texture-like artifacts. A
possible direction to seek for a more global outlook is, there-
fore, to allow for bigger patches.
We do not intended to provide a complete image restora-

tion algorithm in this paper. Instead, we will show that benefit
can indeed be found in using bigger patches in image restora-
tion—given an algorithm which can cope with the dimension
increase. We present an image denoising experiment of sev-
eral popular images, for increasing patch sizes. In the context

7Note that this limitation needed to be imposed for a comparison with Sparse
K-SVD. Further along this section we will present a comparison without this
limitation.

Fig. 7. Experiment 4: Denoising results as a function of the patch size for
Sparse K-SVD and OSDL, which an overcomplete DCT dictionary and a sepa-
rable cropped Wavelets dictionary.

of sparse representations, an image restoration task can be for-
mulated as aMaximum a Posteriori formulation [13]. In the case
of a sparse dictionary, this problem can be posed as:

(14)

where is the image estimate given the noisy observation
is an operator that extracts the th patch from a given image

and is the sparse representation of the th patch. We can min-
imize this problem by taking a similar approach to that of the
dictionary learning problem: use a block-coordinate descent by
fixing the unknown image , and minimizing w.r.t the sparse
vectors and the dictionary (by any dictionary learning algo-
rithm). We then fix the sparse vectors and update the image .
Note that even though this process should be iterated (as effec-
tively shown in [43]) we stick to the first iteration of this process
to make a fair comparison with the K-SVD based algorithms.
For this experiment, denoted as Experiment 4, we use both

Sparse K-SVD and OSDL, for training the double sparsity
model. Each method is run with the traditional ODCT and
with the cropped Wavelets dictionary, presented in this paper.
We include as a reference the results of the K-SVD denoising
algorithm [13], which trains a regular (dense) dictionary with
patches of size 8 8. The dictionary sparsity was set to be 10%
of the signal dimension. Regarding the size of the dictionary,
the redundancy was determined by the redundancy of the
cropped Wavelets (as explained in Section III.A), and setting
the sparse matrix to be square. This selection of parameters
is certainly not optimal. For example, we could have set the
redundancy as an increasing function of the signal dimension.
However, learning such increasingly redundant dictionaries is
limited by the finite data of each image. Therefore, we use a
square matrix for all patch sizes, leaving the study of other
alternatives for future work. 10 iterations were used for the
K-SVD methods and 5 iterations for the OSDL.
Fig. 7 presents the averaged results over the set of 10 publicly

available images used by [45], where the noise standard devi-
ation was set to . Note how the original algorithm pre-
sented in [21], Sparse K-SVDwith the ODCT as the base dictio-
nary, does not scale well with the increasing patch size. In fact,
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Fig. 8. Experiment 5: (a) Subset of atoms from a sparse dictionary trained with OSDL on a database of aligned face images. (b) Compression results (as in ratio
of kept coefficients) by Wavelets, Cropped separable Wavelets, PCA, OSDL and SeDiL [18] on aligned faces. (c) Compression results for the “Cropped Labeled
Faces in the Wild” database.

once the base dictionary is replaced by the cropped Wavelets
dictionary, the same algorithm shows a jump in performance of
nearly 0.4 dB. A similar effect is observed for the OSDL algo-
rithm, where the croppedWavelets dictionary performs the best.
Employing even greater patch sizes eventually results in de-

creasing denoising quality, even for the OSDL with Cropped
Wavelets. Partially, this could be caused by a limitation of the
sparse model in representing fine details as the dimension of
the signal grows. Also, the amount of training data is limited
by the size of the image, having approximately 250,000 exam-
ples to train on. Once the dimension of the patches increases,
the amount of training data might become a limiting factor in
the denoising performance.
As a final word about this experiment, we note that treating

all patches the same way (with the same patch size) is clearly
not optimal. A multi-size patch approach has already been sug-
gested in [46], though in the context of the Non-Local Means
algorithm. The OSDL algorithm may be the right tool to bring
multi-size patch processing to sparse representation-based algo-
rithms, and this remains a topic of future work.

C. Adaptive Image Compression

Image compression is the task of reducing the amount of in-
formation needed to represent an image, such that it can be
stored or transmitted efficiently. In a world where image reso-
lution increases at a surprising rate, more efficient compression
algorithms are always in demand. In this section, we do not at-
tempt to provide a complete solution to this problem but rather
show how our online sparse dictionaries approach could indeed
aid a compression scheme.
Most (if not all) compression methods rely on sparsifying

transforms. In particular, JPEG2000, one of the best performing
and popular algorithms available, is based on the 2-D Wavelet
transform. Dictionary learning has already been shown to be
beneficial in this application. In [47], the authors trained sev-
eral dictionaries for patches of size 15 15 on pre-aligned face
pictures. These offline trained dictionaries were later used to
compress images of the same type, by sparse coding the respec-
tive patches of each picture. The results reported in [47] sur-

pass those by JPEG2000, showing the great potential of similar
schemes.
In the experiment we are presenting here (Experiment 5), we

go beyond the locally based compression scheme and propose to
perform naive compression by just keeping a certain number of
coefficients through sparse coding, where each signal is the en-
tire target image. To this end, we use the same data set as in [47]
consisting of over 11,000 examples, and re-scaled them to a size
of 64 64. We then train a sparse dictionary on these signals
with OSDL, using the cropped Wavelets as the base dictionary
for 15 iterations. For a fair comparison with other non-redun-
dant dictionaries, in this case we chose the matrix such that
the final dictionary is non-redundant (a rectangular tall matrix).
A word of caution should be said regarding the relatively small
training data set. Even though we are training just over 4000
atoms on only 11,000 samples, these atoms are only 250-sparse.
This provides a great reduction to the degrees of freedom during
training. A subset of the obtained atoms can be seen in Fig. 8(a).
For completion, we include here the results obtained by the

SeDiL algorithm [18] (with the code provided by the authors
and with the suggested parameters), which trains a separable
dictionary consisting of 2 small dictionaries of size 64 128.
Note that this implies a final dictionary which has a redundancy
of 4, though the degrees of freedom are of course limited due to
the separability imposed.
The results of this naive compression scheme are shown in

Fig. 8(b) for a testing set (not included in the training). As we
see, the obtained dictionary performs substantially better than
Wavelets—on the order of 8 dB at a given coefficient count.
Partially, the performance of our method is aided by the cropped
Wavelets, which in themselves perform better than the regular
2-D Wavelet transform. However, the adaptability of the matrix
results in a much better compression-ratio. A substantial dif-

ference in performance is obtained after training with OSDL,
even while the redundancy of the obtained dictionary is less (by
about half) than the redundancy of its base-dictionary. The dic-
tionary obtained by the SeDiL algorithm, on the other hand, has
difficulties learning a completely separable dictionary for this
dataset, in which the faces, despite being aligned, are difficult
to approximate through separable atoms.
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Fig. 9. Experiment 6: Subset of the general (sparse) dictionary for patches of size 32 32 obtained with OSDL trained over 10 million patches from natural
images.

As one could observe from the dictionary obtained by our
method, some atoms resemble PCA-like basis elements. There-
fore we include the results by compressing the testing images
with a PCA transform, obtained from the same training set—es-
sentially, performing a dimensionality reduction. As one can
see, the PCA results are indeed better than Wavelets due to the
regular structure of the aligned faces, but they are still relatively
far from the results achieved by OSDL [2].
Lastly, we show that this naive compression scheme, based

on the OSDL algorithm, does not rely on the regularity of the
aligned faces in the previous database. To support this claim,
we perform a similar experiment on images obtained for the
“Cropped Labeled Faces in the Wild Database” [48]. This
database includes images of subjects found on the web, and its
cropped version consists of 64 64 images including only the
face of the different subjects. These face images are in different
positions, orientations, resolutions and illumination conditions.
We trained a dictionary for this database, which consists of
just over 13,000 examples, with the same parameter as in the
previous case, and the compression is evaluated on a testing set
not included in the training. An analogous training process was
performed with SeDiL. As shown in Fig. 8(c), the PCA results
are now inferior, due to the lack of regularity of the images.
The separable dictionary provided by SeDiL performs better in
this dataset, whose examples consists of truncated faces rather
than heads, and which can be better represented by separable
atoms. Yet, its representation power is compromised by its
complete separability when compared to OSDL, with a 1 dB
gap between the two.

D. Pursuing Universal Big Dictionaries
Dictionary learning has shown how to take advantage of

sparse representations in specific domains, however dictio-
naries can also be trained for more general domains (i.e., natural
images). For relatively small dimensions, several works have
demonstrated that it is possible to train general dictionaries
on patches extracted from non-specific natural images. Such

Fig. 10. Experiment 6: Atoms of size 32 32 with recurring patterns at dif-
ferent locations.

general-purpose dictionaries have been used in many applica-
tions in image restoration, outperforming analytically-defined
transforms.
Using our algorithm we want to tackle the training of such

universal dictionaries for image patches of size 32 32, i.e., of
dimension 1024. To this end, in this experiment we train a sparse
dictionary with a total redundancy of 6: the cropped Wavelets
dictionary introduces a redundancy of around 3, and the matrix

has a redundancy of 2. The atom sparsity was set to 250,
and each example was coded with 60 non-zeros in the sparse
coding stage. Training was done on 10 Million patches taken
from natural images from the Berkeley Segmentation Dataset
[49].We run the OSDL algorithm for two data sweeps. For com-
parison, we trained a full (unconstrained) dictionary with ODL
with the same redundancy, on the same database and with the
same parameters.
We evaluate the quality of such a trained dictionary in an

M-Term approximation experiment on 600 patches (or little im-
ages). Comparison is done with regular and separable cropped
Wavelets (the last one being the base-dictionary of the double
sparsity model, and as such the starting point of the training).
We also want to compare our results with the approximation
achieved by more sophisticated multi-scale transforms, such as
Contourlets. Contourlets are a better suited multi-scale anal-
ysis for two dimensions, providing an optimal approximation
rate for piece-wise smooth functions with discontinuities along
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Fig. 11. Experiment 7-8: (a) M-term approximation of general image patches of size 32 32 for different methods. (b) M-term approximation of general image
patches of size 64 64 for different methods. (c) Some atoms of size 64 64 from the dictionary trained with OSDL.

twice differentiable curves [37]. This is a slightly redundant
transform due to the Laplacian Pyramid used for the multi-scale
decomposition (redundancy of 1.33). Note that, traditionally,
hard-thresholding is used to obtain an M-term approximation,
as implemented in the codemade available by the authors. How-
ever, this is not optimal in the case of redundant dictionaries. We
therefore construct an explicit Contourlet synthesis dictionary,
and apply the same greedy pursuit we employ throughout the
paper. Thus we fully leverage the approximation power of this
transform, making the comparison fair8.
Moreover, and to provide a complete picture of the different

transforms, we include also the results obtained for a cropped
version of Contourlets. Since Contourlets are not separable
we use a 2-D extension of our cropping procedure detailed
in Section III.A to construct a cropped Contourlets synthesis
dictionary. The lack of separability makes this dictionary
considerably less efficient computationally. As in cropped
Wavelets, we naturally obtain an even more redundant dictio-
nary (redundancy factor of 5.3).
A subset of the obtained dictionary is shown in Fig. 9, where

the atoms have been sorted according to their entropy. Very dif-
ferent types of atoms can be observed: from the piece-wise-con-
stant-like atoms, to textures at different scales and edge-like
atoms. It is interesting to see that Fourier type atoms, as well
as Contourlet and Gabor-like atoms, naturally arise out of the
training. In addition, such a dictionary obtains some flavor of
shift invariance. As can be seen in Fig. 10, similar patterns may
appear in different locations in different atoms. An analogous
question could be posed regarding rotation invariance. Further-
more, we could consider enforcing these, or other, properties
in the training. These, and many more questions, are part of
on-going work.
The approximation results are shown in Fig. 11(a), where

Contourlets can be seen to perform slightly better thanWavelets.

8Another option to consider is to use undecimated multi-scale transforms.
The Undecimated Wavelet Transform (UDWT) [33] and the Nonsubsampled
Contourlet Transform (NSCT) [50] are shift-invariant versions of the Wavelet
and Contourlet transforms, respectively, and are obtained by skipping the dec-
imation step at each scale. This greater flexibility in representation, however,
comes at the cost of a huge redundancy, which becomes a prohibiting factor in
any pursuing scheme. A similar undecimated scheme could be proposed for the
corresponding cropped transforms, however, but this is out of the scope of this
work.

The cropping of the atoms significantly enhances the results for
both transforms, with a slight advantage for cropped Wavelets
over cropped Contourlets. The Trainlets, obtained with OSDL,
give the highest PSNR. Interestingly, the ODL algorithm by
[6] performs slightly worse than the proposed OSDL, despite
the vast database of examples. In addition, the learning (two
epochs) with ODL took roughly 4.6 days, whereas the OSDL
took approximately 2 days9. As we see, the sparse structure of
the dictionary is not only beneficial in cases with limited training
data (as in Experiment 1), but also in this big data scenario. We
conjecture that this is due to the better guiding of the training
process, helping to avoid local minima which an uncontrained
dictionary might be prone to.
As a last experiment, we want to show that our scheme can be

employed to train an adaptive dictionary for even higher dimen-
sional signals. In Experiment 8, we perform a similar training
with OSDL on patches (or images) of size 64 64, using an
atom sparsity of 600. The cropped Wavelets dictionary has a re-
dundancy of 2.44, and we set to be square. For a fair compar-
ison, and due to the extensive time involved in running ODL,
we first ran ODL for 5 days, giving it sufficient time for con-
vergence. During this time ODL accessed 3.8 million training
examples. We then ran OSDL using the same examples10.
As shown in Fig. 11(b), the relative performance of the dif-

ferent methods is similar to the previous case. Trainlets again
gives the best approximation performance, giving a glimpse into
the potential gains achievable when training can be effectively
done at larger signal scales. It is not possible to show here the
complete trained dictionary, but we do include some selected
atoms from it in Fig. 11(c). We obtain many different types of
atoms: from the very local curvelets-like atoms, to more global
Fourier atoms, and more.

VI. SUMMARY AND FUTURE WORK

This work shows that dictionary learning can be up-scaled to
tackle a new level of signal dimensions. We propose a modifica-

9This experiment was run on a 64-bit operating system with an Intel Core i7
microprocessor, with 16 Gb of RAM, in Matlab.

10The provided code for ODL is not particularly well suited for cluster-pro-
cessing (needed for this experiment), and so the times involved in this case
should not be taken as an accurate run-time comparison.
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tion on the Wavelet transform by constructing two-dimensional
separable croppedWavelets, which allow a multi-scale decom-
position of patches without significant border effects. We apply
these Wavelets as a base-dictionary within the Double Sparsity
model, allowing this approach to now handle larger and larger
signals. In order to handle the vast data sets needed to train such
a big model, we propose an Online Sparse Dictionary Learning
algorithm, employing SGD ideas in the dictionary learning task.
We show how, using these methods, dictionary learning is no
longer limited to small signals, and can now be applied to ob-
tained Trainlets, high dimensional trainable atoms.
While OMP proved sufficient for the experiments shown in

this work, considering other sparse coding algorithms might
be beneficial. In addition, the entire learning algorithm was
developed using a strict pseudo-norm, and its relaxation to
other convex norms opens new possibilities in terms of training
methods. Another direction is to extend our model to allow for
the adaptability of the separable base-dictionary itself, incor-
porating ideas of separable dictionary learning thus providing
a completely adaptable structure. Understanding quantitatively
how different parameters affect the learned dictionaries, such
as redundancy and atom sparsity, will provide a better under-
standing of our model. These questions, among others, are part
of ongoing work.
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