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This talk — A Fiihrung (tou) of Sparse Modeling

Sparse and Redundant Representations J

Theory J - Algorithms J - Applications J

Generative models to provide theoretically justified algorithms and

performance

The end of this talk:

Multi-Layer Convolutional Sparse Modeling
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Contents

@ Modeling
Why do we need models?

@ Sparse Modeling
What are the known guarantees, algorithms, applications?

© Convolutional Sparse Modeling
What happens to all the above if we now address the convolutional sceneario?

Qo Convolutional Sparse Modeling
Did someone say CNNs?
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Modeling

Why do we need Models?

CoSIP ICDL

Theories of Deep
Learning?

Input data

“Nothing is more practical than a good theory” — Vladimir N. Vapnik
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Modeling

Data Processing

Matrix Data

Medical Imaging

o All data has inherent structure than can be exploited .
. . . . Signal Models
@ This structure enables different processing tasks to be carried out
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Modeling

Example - JPEG

: FIESTA NACIT)NAL DELA CERVEZA v
- e————
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Modeling
Image Models

DCT Gaussian Sparse & Redundant
Fourier Smoothness Mixture Models Representations
Lp(x) = vl
Total Variation for Dy = x
Energy Lp(x) =4 ||Vx||
Lp<x) = 4l § & 4\ H t
Smoothness Wavelets
Lp(x) = 4 ||LX||§ Lp(x) = 2 ||wx], Deep C?NNs
PCA Beltrami Flow
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Sparse Modeling

Contents

© Sparse Modeling
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Sparse Modeling

Sparse Representations

“Numquam ponenda est pluralitas sine necessitate "

Occam'’s razor

A Parsimonious
Shave Every

Time!
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Sparse Modeling

Sparse Representations

Y:

o How to find ~;7?

Pursuit - Sparse Coding

(Po) : rr}yin vllo st x;=D~;

(BUT) Cannot be solved!
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Sparse Modeling

Sparse Representations

Characterization of the Dictionary

Mutual Coherece w(D) = m;x [dTd;| [Donoho & Elad, 2003]
1]

Uniqueness Guarantees

Given the system x = D, if ||v|lo < % (1 4F ﬁ), then -y is the sparsest solution.
[Donoho & Elad, 2003]

J. Sulam From shallow to deep sparsity CoSIP ICDL 2017 1 /72



Sparse Modeling

From Ideal to Noisy Signals

Assume now y = D~ + v, with ||v]j2 <€

(Fg) = min lyllo st [ly — DAl < ¢

Restricted Isometry Property - RIP

D is said to satisfy k-RIP with constant § if

(1 =du)llell3 < (D3 < (1+80)llexll3
holds true for any o with ||a|lo = k.

Have we lost hope in finding ~7?

If the true representation ~y satisfies ||v|jo = k < % (1 I (D))' then
R P .
TR =, T 1= 2k — Du(D)

since 0, < (k — 1)u(D)
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Sparse Modeling

Pursuit Algorithms

(P): min lly =Dl st o <k

o Greedy Algorithms
o (Orthogonal) Matching Pursuit
Build support of ~ progressively, one iteration at a time
o Hard Thresholding
o lterative Hard Thresholding

=2 (5" - DT (DY —y))
o Relaxation Approaches

(P1): min |y —D~||34+ Ally|l1 - Basis Pursuit (BP)
Y

o Convex optimization tools
o Soft Thresholding
o lterative Soft Thresholding

. and many other variations.
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Sparse Modeling

Pursuit Algorithms

These algorithms... do they work?

(Fg) = minlyllo st [ly — DAl < ¢

Theorem: Stability of OMP

Ify =Dy +v, |vll2 =< and |lvllo < 3 (1 + ﬁ) ) T then OMP will

@ Run for k iterations
o Find the correct support

@ Stable solution 9

25 1C #(D)([vllo = 1)

[¥omp — 113

V' Perfect reconstruction in the noiseless case (e = 0)
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Sparse Modeling

Pursuit Algorithms

These algorithms... do they work?

(P0): min[lv]1 st ly — D3 <€

Theorem: Stability of BPDN

Ify =Dy +v, |[v]2=¢ and |v]o < % (1 + ﬁ), then BPDN will

@ Stable solution
42

(D)(@llvllo — 1)

I4ee — 713 < -
—p

v’ Perfect reconstruction in the noiseless case (¢ = 0)

All these results... how pessimistic (“limiting”) are they?

Average performance results are available too, showing much better bounds

[Donoho (‘04)] [Candes et.al. (04)] [Tanner et.al. (05)] [E. (06)] [Tropp et.al. (06)] ... [Candes
et. al. (09)]
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Sparse Modeling

Pursuit Algorithms

What about the simplest pursuits?

Stability of Hard Thresholding

Hard Thresholding recovers ¥ if ||v||o < % (1 + |2minl #) = ﬁmﬁ such that

@ Recovery of the support

o 4= ll2 < IMTo (e+u(D) (Ivllo = 1) [ymaxl)

Stability of Soft Thresholding

3= 55 (D7)
Soft Thresholding recovers ¥ if ||v]o < % (1 4 “;Y::;\‘ ﬁ) — ﬁﬁ such that

@ Recovery of the support

o [ =llz2 < Vlvllo (e + (D) (7o = 1) [Ymax| + B)
= 0)

x Imperfect reconstruction in the noiseless case (¢
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Sparse Modeling

What about the Dictionary D7

Dictionaries for Sparse Representations

Analytical dictionaries Transforms that sparsify data:
Wavelets [Mallat et al], Curvelets [Candes et al], Shearlets [Kutyniok et al], ...

N\ T

Y = DI|Z st [lvillo <k Vi
v

I

A\/)’i

CoSIP ICDL 2017 17 /72

Adaptable dictionary  min
r,D

)

M
)

Yi

From shallow to deep sparsity

J. Sulam



Sparse Modeling

Dictionary Learning

”FYZ'H() <k Vi
djll2 =1, Vi

)

i Y — DI||% s.t.
mnin Il Iz s {

General Approach: Block Coordinate Minimization
o It «argmin ||[Y —D!T||Z st. ||villo <k Vi — Sparse coding
r

o D!F! < argmin |Y — DI'*||Z s.t. ||dj|l2 =1,V j — Dictionary Update
D

V.

Dictionary Learning Methods

o Least Squares solution - Method of Optimal Directions (MOD)
o Atom-wise approach with SVD - K-SVD
@ Online Learning - ODL
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Universal Dictionaries

What does a universal dictionary look like?

[Sulam et al, 2016]

19 /72
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Sparse Modeling

Dictionary Learning in Image Processing

. A 5 )
XEEI,ID Elly_xHQ—’— ZHD% — Rix||5 + pillvillo
K2

E Al
=
=EE=

@ Extract all patches R;y into the matrix Y
@ Fix x and solve 11_1‘1,1]13’1 Y = Dr||Z s.t. |lvllo <k
Using K-SVD, ODL, ...

© D and «; and solve for x — weighted averaging
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Sparse Modeling

Dictionary Learning in Image Processing

o (Gaussian) Denoising [Mairal et. al., 2008]
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Sparse Modeling

Dictionary Learning in Image Processing
Inpainting formulation

. A
min - Slly = Mx|3 + > 7 1Dyi — Raxl[3 + il lvillo

K

From shallow to deep sparsity

[Mairal et. al., 2008]

CoSIP ICDL 2017
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Sparse Modeling

Dictionary Learning in Image Processing

e Face Image Compression

Original JPEG JPEG-2000 K-SVD

[Bryt et. al., 2008]
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Sparse Modeling

Dictionary Learning in Image Processing

e Blind Deblurring

Propodil

[Shao et. al., 2014]
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Sparse Modeling

Interlude - Massive Open Online Course!

m Courses ~ Programs v Schools & Partners About ~ Search: O\‘ Sign In

—\srael X

Sparse Representations in Signak
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image

processing.

Start the Professional Certificate Program

@ 2 courses

e > 1,700 students

Instructors

£

Yaniv Romano Michael Elad

@ 104 countries
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Sparse Modeling

How come we have managed to treat global problems with only local modeling?

o Why treat all patches at the same scale?
Multi-Scale Approaches [Ophir et al, Sulam et al, Papyan et al]

o Why treat all patches independently?

Joint sparse coding [Ram et al, Romano et al, Mairal et al]

o Why just averaging at the end?
EPLL [Sulam et al, 2015], Boosting [Romano, 2015]

Missing theoretical Backbone!

For every it patch, R;x=D~;, |l <k

o What is the underlying global model?
o Who are these signals?

o How should the pursuit be carried?

@ How should the (global!) model be trained?
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Convolutional Sparse Modeling

Contents

© Convolutional Sparse Modeling
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Convolutional Sparse Modeling

Convolutional Sparse Representations
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Convolutional Sparse Modeling
Convolutional Sparse Representations
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Convolutional Sparse Modeling

Convolutional Sparse Representations

Why should we care?
o Global model with shift-invariant local prior
@ Inherently no disagreement between overlapping patches

o Related to current practices (i.e., patch averaging)

1
X =DI = ;ZR,L-TQ%
2

o Growing Applications: Pattern Detection [Mrup et al 08, Vidal et al 17], Inpainting [Heide,
Heidrich & Wetzstein 15], Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang 15], CNNs

Formulation

| A

1
e DL|3 + AlIT|lx

Is this well founded?
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Convolutional Sparse Modeling

Sparse Representations Theory

Consider the following example

@ Assume m = 2, n = 64.
@ Then (D) > 0.063

e Thus ||T||p < % (1 + ﬁ) ~8 ie., O(/n)

8 non-zeros globally! for an entire image! and of any size!
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Convolutional Sparse Modeling

From Global to Local

A localized formulation

I8 0 2 max 1illo

(Po,oo) : mlin IT)5,00 st. DI =X

Is the solution to this problem unique? Can we retrieve it algorithmically?
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Convolutional Sparse Modeling

Uniqueness via mutual coherence

(Po,co) : ml_i‘n IT)|§ oo st. DI =X.

If a solution T exists for the Py~ problem such that

I3 o0 < 1( +s),

then this is necessarily the unique globally optimal solution.

@ This pose a local constraint for global guarantees, so they are far more optimistic compared
to global constraints.

In the previous example (m = 2, n = 64), one can now allow 8 non-zeros per stripe; i.e., O(N). J
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Convolutional Sparse Modeling

Recovery Guarantees

(Poe): min |T§ . st. DF=X.

If a solution T exists for the Py, problem such that

1 1
g <-=-(14+— ],
IPltee <3 (1+ 255

then OMP and BP are guaranteed to find it.

o Both OMP and BP are global pursuits: they do not assume local sparsity, though still
succeed in solving the Pg o problem.

@ How about variants that would assume local sparsity?
B. Wohlberg, Convolutional Sparse Coding With Overlapping Group Norms, ArXiv, 2017
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Convolutional Sparse Modeling

From ideal to noisy signals

Y=DI+E, |E[2<c¢

Modified pursuit

(Pboc) s min [ITJI§ o0 st [[Y — DI3 < €.

Some practical questions:
@ Is the solution stable?
@ |s the solution obtained with OMP/BP close to the true one?

@ Do we really need to solve a global pursuit?
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Convolutional Sparse Modeling

Stability of the P ., problem

Stripe-RIP
D is said to satisfy k-SRIP (Stripe-RIP) with constant dy, if

VA (1-op)lAl3 < DAJE < (1+60)llA3

holds true for any A with ||A||8’oo =[5,

Say I' = argmin ||D|o,c0 st. ||Y — DI'||3 < €. How good of a solution is I'?
r

Theorem

If the true representation T satisfies ||T||§ ., =k < % (1 aF ﬁ), then

4€2
(2k = Du(D)’

T — B3 < < —

1 — g

(since 6, < (k— 1)u(D))
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Convolutional Sparse Modeling

Stability of Pursuit Methods

Say we obtain an estimate I" with OMP, how close is it to the underlying true vector?

Theorem: Stability of OMP
fY=DIL+E, ¢, =]|E|}_ =max|R;E|2, and
. 1

1 1 1 €
Tfg,e0 <z 1+ - STt
” ”0,00 2( I"(D)) /J,(D) |szn‘

then, after ||T||o iterations, OMP will
© Find the correct support

r T2 < e
@ [ITomp — T2 < v—re —=D
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Convolutional Sparse Modeling

Stability of Pursuit Methods

Say we obtain an estimate I with Basis Pursuit, how close is it to the underlying true vector?

Theorem: Stability of BP

R 1
Tgp = argmm§||Y — D2+ \|T|1
r

If Y = DI +E, and A = 4[[E[% _, and |5 < & (1 T ﬁ) then,
© Supp{T'pp} C Supp{T}.
@ Tsp —Too < 75|E|5 =75 €.
© All entries greater than 7.5 ez, will be found.

Q f‘Bp is unique.

o This provides a theoretical justification of recent — practical — works dealing with CSC
[Bristow, Eriksson & Lucey 13], [Wohlberg 14], [Kong & Fowlkes 14], [Bristow & Lucey 14],
[Heide, Heidrich & Wetzstein 15], [Sorel & Sroubek 16],[Vidal et al, 17]
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Convolutional Sparse Modeling

Convolutional Pursuit via Local Processing

Traditional Methods
@ Work on Fourier Domain to reduce complexity
@ Don't scale well to large images

@ Don't scale well to many channels

Follow a local analysis!

X=DIr'=) R} Dy

¢ s;: slices
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Convolutional Sparse Modeling

Convolutional Pursuit via Local Processing

1
in —||'Y — DI||2 r
min 2H 2 + AT
1

.1
min Y = > RIsi3+A> lleuli st s;i=Dpo
7 )

s;,o 2

1

Si,0,Uq

. 1 1
e D RTsilE+AD el + p > llsi —Dros + w3
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Convolutional Sparse Modeling

Convolutional Dictionary Learning based on Local Processing

patches

slices

Algorithm

Local Pursuit
min 1|s; +u; — Dpoy |2 + Aol (LARS, OMP, FISTA @ GPU, . .. )
G

Slice Estimate
Pi < %RiY—i-Dlai —u; ; '

—— Proposed (30%)
—— Proposed (100%

Slice Aggregation
X3 Rl pi

SR
(SN

Objective
5 &

Local Laplatian

1 < ‘
S; < Pi — mRZX :‘Z‘
Dual Update
0 1 2 3 4 5
u; < u; +s; — Dpa; Time [Minutes]
Dictionary Update
mDin > llsi +ui — Do |2 (K-SVD, ODL, Trainlets, . . . )
v
41/ 72
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Convolutional Sparse Modeling

Partial Summary of CSC

Global guarantees under local sparsity constraints

The claims are far more flexible than traditional ones

o Guarantees for pursuit methods in recovering the solution (or their stability)

The global pursuit can be decomposed into local operations
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Multi-Layer Convolutional Sparse Coding

Contents

@ Muilti-Layer Convolutional Sparse Coding
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Multi-Layer Convolutional Sparse Coding

CSC and CNN

Convolutional Neural Networks

o Composition of convolutional filters

o Adaptive to data

Multi-Layer ﬁ Convolutional Sparse Coding

Convolutional Sparse Coding

o Single layer of CSC

o Dictionaries are adapted to data
o Underlying sparse model

o Theoretical analysis of related algorithms
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Multi-Layer Convolutional Sparse Coding

Multi-Layer CSC
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Multi-Layer Convolutional Sparse Coding
ML-CSC Definition

Given a set of convolutional dictionaries {D;}£ ,, a signal X € RY admits a representation in
terms of the ML-CSC model if

X =DiT'1, [T1][§,00 < A1,
'y = Doly,  |IT2][,00 < A2,

Fk-1=DgTg, [Tkl <Ak-

@ M the set of signals satisfying the ML-CSC assumption.
o If X(Fz) € My, then

X(T;) =D1Dy ... DT i = DT,

Effective Dictionary
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Multi-Layer Convolutional Sparse Coding

A New Problem Formulation

Say we get Y = X(I';) + E, how to (deep) sparse code?

Deep Coding Problem

(DCPL):  find {TW}E, s.t. Y — DiT||3 < &, IT1[5,00 < A1
[T — Dal2||3 < &1, IT2[15,00 < A2
ITk—1 —DxTkl5 <Exk—1, ITK§ 00 < Ak
10—
8| |—Hap(2) - Hard
— Sp(2) - Soft
6l-«- S (2) - Soft Nonnegative )
4l ]
Given Y = D I'; + E, how to find I';? ol 1

) SO i
R Ve TV — T -2l 1

Simplest alternative: I'y = Pg, (D7 Y) J j

-6l i

gl i

-10 | | - | | - |
-10-8 -6 -4 -2 0 2 4 6 8 10
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Multi-Layer Convolutional Sparse Coding

Solving the DCP¥

Layered Thresholding (LT) algorithm

fQ = 7)932 (Dgf‘l = Pﬁl (D{Y))

Written differently, I'; = ReLu(D? ReLu(D¥Y 4 by)+bs) Forward Pass of CNN

fze RNm2 bz € RVNm2 D; € RNm2xNm,

L €RVm DT e RVmxN

mmy
my b
Ty
m
Y e RN
5 RelU op £3 ReLU op &

The forward pass is a pursuit seeking for the sparse representations under the ML-CSC model
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Multi-Layer Convolutional Sparse Coding

Theoretical Claims for the DCP£

Stability of the solution of DCPf

If a set of solutions {I';} X | satisfy ||T'; (18,00 < % (1 + u(D )), then

a2,
= @2IT:18, 00 — Dp(Dy)

IB: - Tl <

Stability of the Multi-Layer Thresholding (a.k.a forward pass)

[ i—1

- K q X 1 £
If a set of solutions {I';};* ; satisfy ||T;]|0,c0 < 5 (1 + u(D ) \rmaﬂ) o) IF?“”I , then the
forward pass will identify the correct support, and

i = Tall5 oo < \/ITllf o0 (€2 + 1(D3) (IT:ll§ 00 — 1) T + 52)

Cisse et al, Parseval Networks, 2017 :  R;(D;) = gHD;TDZ — 1|2
@ Even in the noiseless case, it is incapable of recovering the solution to the DCP.
o Its success depends on the ratio |7 |/|Te|
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Multi-Layer Convolutional Sparse Coding

Multi-Layer Basis Pursuit

(DCPE):  find {T}E, s.t. Y - D42 < &, IT15 00 < M
[T) — DoT2 |5 < &1, IT2115 00 < A2

Layered BP

I; = argrmin = lITi—1 = DiT|l2 + GlIT:llx

Stability

If {T;} X, satisfy | Ti]l0,00 < % (1 aF (D ), then
o Supp{T;} C Supp{T;}
o [IF; — Till} o < 75| BJ5 oo TTj—y /17516 oo

>
N | =
>
.
<
»
.
A\

o Every sufficiently large entry will be recovered
v

V' Exact recovery in noiseless case
v Independent of the signal contrast
X Bound increase with depth
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Multi-Layer Convolutional Sparse Coding

Multi-Layer Basis Pursuit

1 R
Solve min 5||Y7D1I‘1H§+)\1H1"1||1% I\

r

1,2 .
Solve Hl-l.in 7||F1—D21—‘2H%+)\2HI‘2||1—> I's
2

input image

global average pooling
fully connected fayer
softmax

upsanpling

vectorization
sparse coding layer i

J. Sulam From shallow to deep sparsity



Multi-Layer Convolutional Sparse Coding

Multi-Layer Basis Pursuit

1
Solve min 5||Y — DT 12+ ATl
1

with T§ < 8y, /e, (FE™ + 2DT(Y - Diri )

.—»[‘2

[LISTA Networks, Gregon & LeCun ]
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Multi-Layer Convolutional Sparse Coding

Looking into the Networks

» The forward pass is a pursuit seeking for the sparse representations under the ML-CSC model

4
0.9
08 /
07
06
A
g05
2]
04 l=\/GG-F (0.194)
03 AlexNet (0.192)
02 e/ GG-Very Deep 16 (0.096)
etV GG-M (0.159)
0.1
VGG-S (0.161)
0
1 3 5 7 9 11

Layer
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https://www.youtube.com/watch?v=AgkfIQ4IGaM

Multi-Layer Convolutional Sparse Coding

Checkpoint Recap

V' The forward pass in an CNN is a pursuit for signals following the multi-layer CSC!
v’ Theoretical claims for the Multi-layer Thresholding algorithm

v’ Layered BP presented as alternative with stronger guarantees

@ How can we project signals onto the ML-CSC model?

o Is the model empty?

@ How should the convolutional filters be trained?

@ How is the learning of the ML-CSC model related to traditional CNN algorithms?

o How does it perform?
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Multi-Layer Convolutional Sparse Coding

A Projection Approach

Say Y =X(I';) + E, X & M.

ML-CSC Projection (P, )

Given Y and convolutional dictionaries {D;}X |,

(Paa) s min Y =X(@l2 st X(Ti) € My,

o Unlike the DCP£, the solution X € My:

X =Dy =D1DyI's =--. =DOT,

@ A solution to the DCPf, provides f‘i_l #* Dif‘i
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Multi-Layer Convolutional Sparse Coding

Stability of the Paq, problem

Theorem
X(T';) € My is observed through Y = X(T';) + E,
[ITillo,00 = Ai < 3 (1+ ﬁ) for1 <i< K,

E||2 S 50, and

Then, the solution {f‘l}f: | to the Pprq, problem satisfies

482
2IIT:flo,c0 — (D)

s - B4l13 < —

v' Bound is not cumulative across layers

v" Dependence on ,u(D<L)) - not necessarily a bad thing!
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Multi-Layer Convolutional Sparse Coding

Pursuit Algorithms

@ How to solve Ppy, ?

o How to seek for {I’;} while assuring X(T;) € Mx?

ML-CSC Pursuit

e Global Pursuit:
'k < argmin [Y — DUOT|2 st IT)5,00 <k
e Finding the inI;1er representations:
for j=K,...,1do
| Tj_1+ DIy

end
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Multi-Layer Convolutional Sparse Coding

Stability of Pursuit Algorithms

Theorem: Stability of the Pursuit - ¢1 case
Y=X@)+E XeMx [Blos <o [Tilloeo =X <3 (1+ 7).
i=1,...,K—1and [Txllo,0 = As < 1 (1 + TKU) {T;} satisfy the N.V.S. for D;.

Let
Ik + argmin||Y + DO + ¢2|Tx
r
f‘ifl%Dif‘i, ’L'ZK,...,I

Then, for every ith layer,

o Supp(T;) C Supp(T;)

3
° ||I‘ -T; ||2 o S €r H 1/ CJ — Tightest for the deepest layer!

J=i+1

Non Vanishing Support property T' will not cause atoms to be combined such that their supports
cancel each other.
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Multi-Layer Convolutional Sparse Coding

Stability of Pursuit Algorithms

Theorem: Stability of the Pursuit
Suppose Y = X(I';) + E, [[Y —X|l2 < &, and ¢o = [|E||5 . Let T'; satisfy the N.V.S. property

for the respective dictionaries D;, with ||I‘i||87<>o =\ < % (1 4 ﬁ), for 1 <: < K, and

€

s 1 1 _ 1 . Q
ITxN6,00 < 3 (” ;L(D(K))) L)) o

and

I'x < argmin |[Y - D3 st [[Tljo,co <Ax (with OMP)
r
f‘i<_Di+1f‘i+17 ’i:K,...,l
Then
@ Supp(T;) C Supp(T;),

& 12 £2 3 K—1
(2] ||F1 — F'L||2 < 1_H(D(K))(‘E)FK”8,OO_1) (2) :
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Multi-Layer Convolutional Sparse Coding

What about the Dictionaries?

The existence of X € M depends on proper dictionaries D;. J

o Why should f‘i,l = Dif‘i be sparse?

o |Is the model empty?

Example:
i) D; are Random Dictionaries, i.e., dJI.( = RJTV, v ~ N(0,02I)

ii) One can construct T'gx with [Tk |0,c0 < 2 such that Pr (Ff{_l = 0) =0 — dense!

i.e, if D is random, 39 I such that DT is sparse. In this case, the model is empty!

If one seeks for {I'; }, one must seek also for {D;} that would allow for that decomposition. )
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Multi-Layer Convolutional Sparse Coding

How to Learn?

T t
min  SOIY - XNTLDy3 st X €Mm
{rirApi} ldl]le =1,V i,5

Problematic:
@ The constraints on I'; are coupled

o I'; depends on {Dj}JK:Hr

Sparsity Proxies

| A

k1 =Dglk. = [Tk-1l§,c < cxlDxlolTkl§,
K
ITillgeo < ¢ [ IDsl0lTx 11§ 00-
j=it1
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Multi-Layer Convolutional Sparse Coding

MultiLayer Convolutional Dictionary Learning

Problem formulation

T K
min Y —DiDz.. . DTi[3+ D GlDillo st Tk .00 < Ak
Tk 3:ADi} i i=2

| \

Algorithm

Data: Training samples {Y;}, initial convolutional dictionaries DY

fort=1,...,7 do

Draw Y? at random;

Sparse Coding: I'g + argrmin Yt = DTz st |T)I§ o < A (IHT/FISTA);

Update Dictionaries:
for k=K,...,1do
Dk — ar%min ||Yt —-D;... Dk o DKFK||2 + CkHDkHO (PGD),
k

end

end

A
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Multi-Layer Convolutional Sparse Coding

Related work

Dictionary Learning

Chasing-Butterflies : min|Y — Hjl.’ill S;|13, S; sparse [L LeMagosrou et al, 2015]

Fast-Transforms Learning : cascades of convolutions with sparse kernels [chabiron et at, 2015]

Trainlets : Sparse combinations of shift-invariant wavelet atoms (which can be
expressed as sparse convolutions!) [sulam et al, 2016]

Auto-encoders

| A

Sparse AutoEncoders : imposing sparse-enforcing loss in hidden layer [ng 2011]

K-Sparse AutoEncoders : Wmli)nb/ Y — (WHR(WTX +b) +b) ||z vakhzan, 2014

Winner-Take-All AutoEncoders : “Spatial” sparsity + “life-time” sparsity [Makhzani, 2015]
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Multi-Layer Convolutional Sparse Coding

Learning an MNIST model

Multi-Layer Convolutional Dictionaries:

L l!‘q‘ﬁ' ENEO
FEEEdETEEN
SH NN EONS

= T D e .
e low] C ] ] » Z B
Loss . Dictionary Sparsity o Average Residual <4
h - 51 ¢
10" 0.98f -2
02 e
Z1 -1
168 0.96] ==
220
0.15 4\ ()
10 0.94) )
%5
o=
10t 0.9 0.1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Epochs Epoch Epochs
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Multi-Layer Convolutional Sparse Coding

Learning an MNIST model

Multi-Layer Convolutional Decomposition:
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Multi-Layer Convolutional Sparse Coding

Learning an MNIST model

Sparse Recovery (Synthetic Data):

Layered-BP Projection

Layer-Wise Representation Error
0
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Multi-Layer Convolutional Sparse Coding

Learning an MNIST model

Sparse Recovery (MNIST Data):

Layered-BP Projection

Layer-Wise Representations Error Projection Representations Error

0 0
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2
N v 03
4 08
0.2
6 06
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10 10 0
0 1 2 3
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Layer Layer

Sample Sparsity
Sample Sparsity
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Multi-Layer Convolutional Sparse Coding

M-term Approximation

0.3
— = Sparse Autoencoders
N ~—ML-CSC (increasing sparsity)
S N —==-= k-sparse Autoenc. (25-50-60)
0.25}‘ N ~#— Trainlets
%

Relative Reconstruction Error

NNZ
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Multi-Layer Convolutional Sparse Coding

Classification

Unsupervised Setting: After training a representation model, we compute features with it for each
training example, and learn a linear clasifier on them. J

Method Classification Error
Stacked Denoising Autoencoder (3 layers) 1.28%
k-Sparse Autoencoder (1K units) 1.35%
Shallow WTA Autoencoder (2K units) 1.20%
Stacked WTA Autoencoder (2K units) 1.11%
ML-CSC (1K units) - 2nd Layer Rep. 1.30%
ML-CSC (2K units) - 2nd&3rd Layer Rep. 1.15%
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Ongoing work
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Conclusion

Ongoing work

o Unsupervised Classification ...
@ Supervised Training ...

o Generalization to average performance bounds ...

Take Home Messages

o Model assumptions enables us to propose algorithms serving signals in this model
o More importantly, it enables to develop theoretical guarantees for these algorithms

o In particular, the ML-CSC provides a formal framework for the study of CNN,
architectures and algorithms
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